
Auto-patching DOM-Based XSS at Scale

Inian Parameshwaran Enrico Budianto Shweta Shinde
Hung Dang Atul Sadhu Prateek Saxena

National University of Singapore, Singapore
{inian, enricob, shweta24, hungdang, atulsadh, prateeks}@comp.nus.edu.sg

ABSTRACT
DOM-based cross-site scripting (XSS) is a client-side code injec-
tion vulnerability that results from unsafe dynamic code genera-
tion in JavaScript applications, and has few known practical de-
fenses. We study dynamic code evaluation practices on nearly
a quarter million URLs crawled starting from the the Alexa Top
1000 websites. Of 777, 082 cases of dynamic HTML/JS code gen-
eration we observe, 13.3% use unsafe string interpolation for dy-
namic code generation — a well-known dangerous coding prac-
tice. To remedy this, we propose a technique to generate secure
patches that replace unsafe string interpolation with safer code that
utilizes programmatic DOM construction techniques. Our system
transparently auto-patches the vulnerable site while incurring only
5.2 − 8.07% overhead. The patching mechanism requires no ac-
cess to server-side code or modification to browsers, and thus is
practical as a turnkey defense.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming; D.2.5
[Software Engineering]: Testing and Debugging; D.4.6 [Operating
Systems]: Security and Protection

Keywords
Web Security, Taint Analysis, DOM-based XSS, Auto-patching

1. INTRODUCTION
JavaScript has become a de-facto scripting language that powers

popular web applications, browser extensions (or add-ons), HTML5
mobile applications (e.g., WebView, Windows 8 Metro apps), and
server-side applications (e.g., NodeJS apps). Recent experimen-
tal systems have demonstrated that JavaScript can be used to de-
velop traditional games, browsers and even an operating system [2,
6, 16, 17]. However, presently, applications built with JavaScript
are fraught with security holes — for example, code injection in
JavaScript applications (such as DOM-based XSS) is known to be
highly pervasive and an elusive category of vulnerabilities for many
commercial scanners to find [54]. A majority of popular web sites
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ESEC/FSE’15, August 31-September 04, 2015, Bergamo, Italy
c© 2015 ACM. ISBN 978-1-4503-3675-8/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2786805.2786821.

including Google+, Twitter and Yahoo have recently been vulnera-
ble to these attacks [3, 4, 8].

DOM-based XSS has few known practical defenses. Conceptu-
ally, several defense-in-depth techniques are known to thwart DOM-
based XSS; however, their practical deployment requires intrusive
changes to the application and do not retain compatibility with
older browsers. For example, Content-Security Policy (CSP) [55]
and capability-controlled DOM [39] are two techniques that can
ensure that JavaScript code only from whitelisted sources can be
evaluated in a website. However, these techniques require signif-
icant rewriting of applications to be made practical, and as result,
less than 1% of the sites have deployed these protections [33, 34,
60]. Further, these techniques work only on browser backends that
support CSP or ECMAScript 6 features. Defenses which rely on
browser-specific implementations or new language features fail to
protect applications on existing browser and HTML5 backends. At
the same time, the number of browser backends are proliferating —
there are over 16 mobile browser vendors on the official Android
market, each with over a million users [15].

The root cause of DOM-based XSS vulnerabilities is unsafe soft-
ware engineering or coding practices — specifically, the use of un-
safe string interpolation in dynamic code evaluation constructs. A
common defense developers employ is to validate or sanitize un-
trusted data before using it in dynamic code evaluation constructs.
However, this mechanism is well-known to be prone to errors in
designing sanitization routines [24, 40] and mediating on all uses
of dynamic code evaluation constructs consistently [23, 29, 52, 53].

In this paper, we propose a new approach to protecting Java-
Script applications based on auto-patching. Our approach aims
to retrofit protection to existing JavaScript applications, requiring
only standard browser features available in existing browser im-
plementations. Most previous prevention techniques have targeted
browser-based script-blocking [20, 55, 56] or application of saniti-
zation routines in client-side code [24,52,53], rather than rectifying
the code to perform safe code evaluation. Our proposed approach
is to automatically synthesize secure code patches which replaces
unsafe application logic responsible for dynamic code evaluation.
The generated patches generate dynamic code without invoking the
HTML parser with untrusted strings in the browser. Instead, our
patches directly construct the rendered page by using alternative
DOM construction API — a well-known robust programming prac-
tice which eliminates the need for sanitization [45].

We develop a complete system called DEXTERJS for automat-
ically synthesizing patches for DOM-based XSS vulnerabilities in
JavaScript applications. DEXTERJS performs dynamic analysis to
detect and repair DOM-based XSS bugs in real web applications.
Our automatically synthesized patches are directly deployed on the
website via a hot-patching mechanism we develop, offering a quick

Figure 1: A cumulative distribution function (CDF) of zero-day
exploits found in Alexa Top 1000 sites.
defense that requires no developer effort. Our patches are browser-
agnostic, require no browser or server-side code modifications, and
do not require users to install any plug-ins or add-ons.
Results. We have released our core analysis engine (DEXTERJS)
as a cloud-hosted proxy for detecting DOM-XSS [7]. In our evalu-
ation, we have used DEXTERJS on nearly a quarter million URLs
crawled starting from the Alexa Top 1000 websites. First, we find
820 DOM-based XSS vulnerabilities are exploitable — a finding
that is consistent with similar reports [54, 57]. DEXTERJS gener-
ates exploit-exhibiting witnesses for these exploitable cases auto-
matically. Second, we find that of the 777, 082 dynamically gen-
erated code fragments observed during our evaluation, 103, 335
(13.3%) of the cases utilize unsafe string interpolation. This sug-
gests that disabling all dynamic code evaluation is likely imprac-
tical and perhaps an overkill, since developers often use safe pro-
gramming practices in dynamic code evaluation. Finally, our sys-
tem successfully generates safe patches for all the vulnerabilities
it confirms to be exploitable. The auto-patched websites show an
average performance overhead of 5.2−8.07%, which is not signif-
icantly perceivable for interactive use. This enables auto-patching
as a turnkey defense for existing sites.
Contributions. In summary, we make the following contributions:

• Automated Patching: We propose a backwards-compatible
auto-patching defense for DOM-based XSS. Our approach
requires no modification of browsers or server-side code, and
requires no developer effort.

• Browser-agnostic Fine-grained Tainting: DEXTERJS com-
prises of a browser-agnostic JavaScript rewriting engine per-
forming character precise fine-grained taint analysis robustly.
It is tested on several popular web browsers, including Fire-
fox, Chrome, Internet Explorer and Safari. We have released
it for public testing [7].

• New Findings: We carry out an extensive evaluation of the
Alexa Top 1000 sites. We crawl links from the top 1000
Alexa websites and analyzed JavaScript code from 228, 541
URLs, resulting in over 777, 082 distinct dynamic code eval-
uation instances constructed from untrusted data. First, we
find that approximately 5% of these instances arise only on
certain browsers owing to subtle browser variations, high-
lighting the advantages of browser-agnostic detection and de-
fenses. Second, we find that developers use unsafe coding
practices when generating dynamic web content in 13.3% of
all the cases. Third, a total of 820 distinct zero-day DOM-
based XSS vulnerabilities across 89 different domains were
confirmed to be exploitable. 583 of these exploits were from
the Alexa top 1000 domains (Figure 1), the remaining were
from external iframes embedded in these websites. Finally,
all the found vulnerabilities are auto-patched with a average
performance overhead of 5.2− 8.07%.

2. PROBLEM OVERVIEW
As opposed to traditional (reflected and persistent) XSS, DOM-

based XSS executes purely at the client-side, rendering server-side
sanitization insufficient. We give an example to motivate the spe-
cific problem we tackle in this work.

2.1 Motivating Example
DOM-based XSS is a code injection vulnerability in which a web

attacker is able to inject malicious JavaScript in a client’s web ses-
sion. In the attack, we assume that the attacker can entice an un-
suspecting user into visiting a URL of his choice. The attacker em-
beds the attack payload either directly into the maliciously crafted
URL pointing to the victim website, or may load the victim’s web
page in an iframe and subsequently pass data to it (say via the
postMessage API) [48]. Using these mechanisms, the attacker
can control some data which the victim site consumes when exe-
cuted on the client’s browser.

A simple example of a vulnerable JavaScript application is shown
in Figure 2(a). In the attack, the user clicks an attacker-provided
URL, which he can craft targeting the victim’s web browser (e.g.,
http://foo.com/bar.html#).
The vulnerable JavaScript code runs in the domain foo.com. The
code snippet programmatically reads the location of the webpage
(using location.href). It constructs a string with this informa-
tion and uses the browser’s dynamic HTML generation constructs
like innerHTML to render the string as HTML code in the client’s
browser.

The attack succeeds because the JavaScript code renders attacker-
controlled strings — an img tag embedded in the URL in this case
— as HTML content. The attacker’s payload automatically trig-
gers a JavaScript event, allowing the attacker to run arbitrary code
on behalf of the origin foo.com. As a preventive measure against
XSS attacks, several browsers deploy client-side XSS filters [20].
These filters are quite effective against its server-side counterpart
(reflected XSS) [26]. However, DOM-based XSS attack vectors
can easily bypass these browser-based XSS filters [56]. Safe sani-
tization of untrusted string embedded in HTML content is a known
difficult problem, prone to errors [24, 40, 43, 53].
Safer coding practices. A cleaner and more effective approach is
to avoid using code evaluation constructs such as innerHTML on
unsafe data, as a safer coding practice. For example, the logic in
Figure 2(a) can be alternatively programmed with safer code shown
in Figure 2(b), which preserves the intended functionality of the
original code. The vulnerable code “interpolates” untrusted string
values into a fixed string, and then evaluates the interpolated string
as HTML. Instead, the safe code renders the same visual DOM
using safer DOM construction API without invoking the HTML
parser. As discussed in previous work (c.f. Blueprint [45]), this ap-
proach preserves the intended structure of the dynamically gener-
ated HTML and cleanly separates the code from attacker-controlled
data. Other code evaluation constructs that evaluate strings (e.g.,
eval, event attributes) can similarly be replaced with program-
matic constructs that avoid string interpolation (e.g., using JSON.
parse instead) [41, 51].

In our large-scale evaluation, we find that developers often make
use of programmatic DOM manipulation (e.g., attaching attributes
or extending DOM hierarchies) rather than unsafe HTML evalu-
ation on attacker controlled data (e.g., using innerHTML). Di-
rect code evaluation of strings interpolated from attacker controlled
data, such as in our vulnerable example, accounts for less than 14%
of the cases. Our defense goal is to identify and convert such vul-
nerable constructs to safe-code by patching the application.

1
2
3
4
5
6
7
8
9
10
11

var evil = location.href;
var d = new Date();
var n = d.getDate();
var x = document.getElementById(‘target’);
var v1 = document.createElement(‘a’);
v1.setAttribute(‘id’,n);
var v2 = document.createTextNode(evil);
v1.append(v2);
var v3 = document.createElement(‘div’);
v3.appendChild(‘v1’);
x.appendChild(v3);

1
2
3
4
5

var evil = location.href;
var d = new Date();
var n = d.getDate();
var x = document.getElementById(‘target’);
x.innerHTML = “<div>”+evil+”</div>”;

(a) (b)

Firefox http://foo.com/bar.html#%3Cimg%20src=/%20onerror=alert(1)/%3E
Chrome http://foo.com/bar.html#

Figure 2: (a) Example of string interpolation followed by code evaluation (unsafe coding practice). (b) Example of code which uses
programmatic DOM constructs and avoids DOM-based XSS attack (safe coding practice).

<div>	 $n $evil </div>

Test	 Harness

1

2

patch()

<div>	 </div>	

PATCH	 POINTS	 &	 TAINT	 INFO

TEMPLATE TEMPLATE	 DB

PATCHED
JAVASCRIPT

RUNTIME	 INPUT	 :

PATCH	 SYNTHESIS
(Pre-deployment Phase)

PATCHED	 EXECUTION
(Post-deployment Phase)

3 4 5
+++++	 ++	 ++	 +	 +	 ++00 -‐-‐-‐-‐-‐ ++++ ++++++

SAFE	 DOM	 TREE

Figure 3: Approach overview of DEXTERJS: (1) Patch point identification (2) Template Inference (3) Hot-patching (4) Template
selection (5) Runtime template instantiation for safe DOM rendering.

2.2 Problem Statement
We refer to all the points in the program where attacker con-

trolled data is used in a code evaluation construct as dynamic code
evaluation points (DCE points). Only a fraction of these are ac-
tually vulnerable to DOM-based XSS and are candidates for auto-
patching 1. This subset is called as patch-points. By default, DEX-
TERJS generates patches for patch-points. Developers can con-
figure DEXTERJS to generate patches for other unconfirmed DCE
points as well.
Goal: Auto-Patching Vulnerable Applications. DEXTERJS takes
as input a website which may be vulnerable to DOM-based XSS,
a benign test harness, and a list of browser backends on which
the website renders correctly2. As output, DEXTERJS generates a
list of confirmed DOM-based XSS exploits and the “auto-patched”
JavaScript application that invokes the patch (See Figure 3).

The code patch applied by DEXTERJS to safeguard vulnerable
web applications should satisfy the following properties.

• Correctness. The patch should render a valid DOM tree, pre-
serving the structure of the DOM created by the original op-
eration at the patch-points, for inputs observed during the
execution of the test harness. This property specifies a nec-
essary condition to ensure that the patch does not break the
original functionality of the application.

• Safety. The patch should never execute script code from data
under the direct control of the attacker, for all inputs reaching
the patch-points.

• Browser-agnostic. The patch added by DEXTERJS should

1Rest of them may not be exploitable by the virtue of proper sani-
tization defense in place.
2The test harness can either be a set of functional test cases (Sele-
nium Scripts), or a URL test suite. Alternatively, DEXTERJS can
automatically crawl to generate the test harness.

not use any non-standard (or browser-specific) language fea-
tures that are unsupported by the given set of browsers.

• Low Overhead. The patched applications should have a min-
imal performance overhead.

Overview & Deployment Setting. DEXTERJS does not require
any user installation on the client’s end or access to the server-side
code. Website developers and testing teams can use DEXTERJS
service via a proxy to analyze and auto-patch their applications.
Therefore, the instrumented code can be easily sent out from proxy
server to their web browser or analyzed by a cloud-based browser
backend. DEXTERJS aims to achieve scalability and compatibility
with existing web applications and platforms.

3. DEXTERJS APPROACH
DEXTERJS system comprises of two phases shown in Figure 3:

a pre-deployment analysis phase and patched execution in the de-
ployment phase. In pre-deployment analysis, DEXTERJS executes
the application under the given test harness. During this process,
it observes if the application uses any string interpolation for code
generation. For each such instance, DEXTERJS infers a set of be-
nign DOM (or parse) trees that the application intends to generate
by evaluating the interpolated string. In essence, these benign parse
trees define a fixed template which can be “instantiated” at runtime
with attacker-controlled values safely3. In our pre-deployment test-
ing, we create a database of such whitelisted or allowed templates
and instrument the application to instantiate the templates securely
at runtime. In deployment, the instrumented patches inserted by
DEXTERJS select the appropriate template from the whitelisted
database, and instantiates it using safe programmatic DOM con-
struction API available in all commodity web browsers.
3Our templated execution is analogous to how prepared statements
in SQL help avoid SQL injection.

3.1 Patch Synthesis
During the pre-deployment phase, DEXTERJS first instruments

and analyzes the given JavaScript application (See Figure 3). This
includes extracting the position of all DCE points, verifying if they
are exploitable and marking the exploitable DCE points as patch-
points. DEXTERJS utilizes character-precise dynamic taint-tracking
to infer DCE points. Further, DEXTERJS infers the template struc-
ture using the taint information identifying the attacker-controlled
bytes in the string used for generating client-side code.

Table 1: Default sources and sinks used by DEXTERJS.
Sources Sinks

HTML -

innerHTML, outerHTML,
Script.src, Image.src,
Script.text, Script.textContent,
Script.innerText, write, writeln

JavaScript - eval,
setTimeout, setInterval

Location

URL,
baseURI, documentURI,
window.location,
document.location,
location.hash,
location.search,
location.href

window.location,
document.location,
location.href,
location.assign,
location.replace

Storage cookie, localStorage,
sessionStorage

cookie, localStorage,
sessionStorage

Postmessage Postmessage data window.postmessage

3.1.1 Identifying patch-points & Vulnerabilities
Dynamic Taint Analysis. We use dynamic taint analysis to de-
tect all flows from unsafe input sources (i.e., can be controlled by
attacker) to code execution sinks [48]. For this, our DEXTERJS
server instruments client-side application code and runs the instru-
mented code in multiple browsers. During this benign-run of the
application, the character-precise taint-tracking records all the flows
that use the tainted portions of the string in code execution con-
structs. The code execution sinks for these flows are then marked
as DCE points. For example, the instrumented code must report
the taint flow from the taint source location.href (line 1) to
the taint sink x.innerHTML in Figure 2(a). DEXTERJS uses the
sources and sinks defined in Table 1 by default.

We build a source-to-source rewriting infrastructure for embed-
ding fine-grained dynamic taint-tracking logic in the original appli-
cation. The challenges in implementing such a system that scales
and is robust for real-world applications are discussed separately in
Section 4. DEXTERJS’s taint analysis engine instruments applica-
tion code to perform both positive and negative tainting [37, 38].
By definition, positive tainting identifies and tracks trusted data
originating from constants. On the other hand, negative tainting
focuses on untrusted data derived from attacker-controlled inputs.
Tracking both positive and negative taint helps us determine the
set of values which are neither positively nor negatively tainted.
For example, values which are derived from sources such as Date,
Math.random, etc. are non-deterministic but benign. The at-
tacker controls only parts of the string which are negatively tainted.
This information is later used for auto-generating patches.
Verifying Exploitability. DEXTERJS verifies whether the DCE
points are actually exploitable and if so, marks them as patch-
points. It generates browser-specific exploits based on the exact
context wherein the tainted data is being interpreted [48, 54]. Our
attack rules are based on publicly known strategies such as the XSS
filter evasion cheat sheet [21, 54]. Finally, DEXTERJS executes all
the generated candidate attack vectors in commodity browsers and
verifies their exploitability. All the confirmed exploitable flows are
then grouped as patch-points and are given to the next phase of the
DEXTERJS system for patching (See Figure 3 Step 1).

3.1.2 Template Inference
DEXTERJS treats each patch-point separately and gives it a unique

identifier ID. During a benign run in the pre-deployment phase,
DEXTERJS’s synthesis engine records every runtime string S that
has been passed to a particular patch-point p. Apart from the string,
the engine also receives a corresponding taint type T for each char-
acter that forms S. Recall that the taint type of each character can
either be positive (+), negative (−), or non-deterministic (0).

To determine a benign parse tree of S, DEXTERJS relies on com-
modity browser engine to programmatically convert S into a DOM
tree object. This is done via an API parseFromString()which
is available in all mainstream browsers. Using the resulting DOM
tree object of S, along with the taint information T , the synthesis
engine then determines nodes of the DOM tree which are nega-
tively tainted (under the attacker’s control) and nodes which are
positively or non-deterministically tainted. This DOM tree infor-
mation – along with the augmented taint information for each node
– is referred to as a template. The template is a model of the be-
nign structure of code generated at p. Using a template, DEXTERJS
can determine all the static parts of the tree (i.e., positively-tainted
nodes) and then use it to fix the expected structure. On the other
hand, all the nodes in the tree that are either negatively or non-
deterministically tainted are considered as holes which are intended
to be filled based on the runtime string at p. Finally, DEXTERJS
collects all the templates generated at each patch-point into a white-
listed template database.
Example. We illustrate DEXTERJS’s template-inference process
with the help of the running example discussed in Section 2. In Fig-
ure 2(a), innerHTML (the sink in this case) is used to add a new
anchor tag inside a div element. DEXTERJS receives a tainted
string S along with its associated taint range T . Next, the synthesis
engine parses S into its corresponding DOM tree. Along with this
DOM tree and the taint information T obtained from Step 1, it gen-
erates a template (See Figure 3 Step 2). The synthesis engine uses
this template to infer that the <div> element is a static structure,
whereas the values of id and text of <a> element are holes.

3.1.3 Hot-Patching
During the pre-deployment phase, DEXTERJS also adds hooks

at the patch-points such that the program will execute the patch
function instead of the original code evaluation construct. This is
akin to the notion of hot-patching during software updates [28].
The patch function implementation is added to the beginning of
the instrumented program in global scope, ensuring its visibility
throughout the program. Figure 3 Step 3 illustrates the redirection
of control flow through hot-patching from innerHTML to patch
function.

3.2 Patched Execution
All the heavy-weight analysis for identifying the patch-points is

done before deployment. Once the application is deployed on the
server, only instantiating the correct patch is delegated to runtime,
thus minimizing the performance overhead at runtime.

3.2.1 Runtime Template Instantiation
The patch function takes in two parameters: (1) the static iden-

tifier ID of the patch-point and (2) a runtime string S′ which is
passed to the DCE point. DEXTERJS inserts the database of white-
listed templates obtained during the template inference step along
with the patch function into the vulnerable page before deploy-
ment. The patch function queries this database based on the ID
to find the right template to be applied to the runtime string S′.

hole

div

a

innerHTMLid

hole

patch()

div

a

innerTextid

n

TEMPLATE
RENDERED	 DOM

+

+

+ +

0 -‐

Safe
DOM
APIWhitelisted

Template
Database

Runtime	 String	 S’	 :	 <div>	 </div>	

Created	 using	 setAttribute()

Created	 using	 createTextNode()	 &	 appendChild()

Figure 4: Template Instantiation, showing how the template
holes are populated from the input and rendered using safe
DOM construction API.

Safe DOM Rendering. The goal of the patch function is to ren-
der S′ such that the DOM-tree generated in the browser is free
from XSS payloads, and contains valid benign markup. To do this,
we use the BUILD_SAFE_DOM procedure shown in Algorithm 1
line 4. The first preparatory step is to parse S′ into a preliminary
DOM-structure, which is not rendered directly as it is derived from
the untrusted string S′ (line 3). Then, we match this structure with
a template from the whitelisted template database (variable tmpl at
line 2). The matching procedure starts from the root comparing
each node of the preliminary-DOM with the template recursively
(line 4-27). If the template and the preliminary-DOM match at all
nodes, except at the holes, then the algorithm has found runtime
values to fill in the holes. This is illustrated in Figure 4.

The final step is to generate code and render the entire DOM tree
securely (See Figure 3 Step 5). The fixed structure of the template
is constructed directly from the whitelisted template, not from the
preliminary-DOM, using standard DOM construction APIs. The
values that match the holes in the preliminary-DOM derived from
S′ are rendered via safe DOM construction API that do not inter-
pret strings as code. Specifically, these APIs are setAttribute()
and createTextNode() (underlined at line 15, 32, 34) which
prevent script execution [45]. The entire approach only renders
whitelisted nodes completely independent of runtime values in S′,
and uses non code-evaluating constructs to append strings from S′

to the rendered tree. Thus, this is a principled approach to separate
code from data. As a result, all untrusted strings are prevented from
reaching code-evaluating DOM API and achieve the equivalent of
executing the safe code shown in Figure 2 (b).

If the template and the preliminary-DOM do not match at all
nodes (except for the holes), this is a template which has not been
encountered in our testing. In such cases, we have two options:
either to proceed with the rendering (which may be vulnerable) or
to avoid rendering the string (preserving compatibility). We leave
this as a configurable option to the end system user; our default
presently is to be safe and not render the string.

There are possible cases where just using safe DOM construction
techniques are not enough. This can happen if attacker controlled
data is used inside a script tag, event attributes, or in the src
attribute of a script or iframe tag. However, such cases were
extremely rare in our evaluation of 228, 541 URLs and were of-
ten non-exploitable because of existing sanitization. Nonetheless,
our algorithm uses a whitelisted policy for the resource-name for
the rendered string, similar to what has been proposed in the previ-
ous work [45, 56]. This is indicated as the context_valid check in
Algorithm 1 to protect against such cases.

3.2.2 Runtime Template Selection
There can be multiple templates for a given patch-point if mul-

tiple control flow paths reach the same patch-point (for example, if
there is an if-else branch before the patch-point). In this case
DEXTERJS should determine which one of these templates is to

1: procedure PATCH(ID, S′)
2: tmpl← get_template(ID)
3: BUILD_SAFE_DOM(get_rootnode(tmpl), get_rootnode(parse(S′)))
4: procedure BUILD_SAFE_DOM(NT , NR)
5: if NR is root and NT .tagName 6= NR.tagName then
6: issue_warning()
7: else if NT .tagName = NR.tagName then
8: for attribute a in list_attr(NR) do
9: if a /∈ list_attr(NT) then

10: RESTRUCTURE(NT , html_stringify(a))
11: else
12: NT .setAttribute(a.name, context_valid(a.value))
13: if NT .children.length = NR.children.length then
14: for C ∈ list_child(NR), C′ ∈ list_child(NT) do
15: BUILD_SAFE_DOM(C′, C)
16: else
17: isNewTmpl← true
18: for C ∈ list_child(NR) do
19: if is_unique(C,NR.children) then
20: C′ ← get_associated_node(C,NT .children)
21: if C′ is ∅ then
22: RESTRUCTURE(NT , html_stringify(C))
23: else
24: isNewTmpl← false
25: BUILD_SAFE_DOM(C′, C)
26: if isNewTmpl is true then
27: issue_warning()

28: procedure RESTRUCTURE(N, elm_str)
29: hole← get_hole(N)
30: if hole is an attribute then
31: sVal = context_valid(hole.value+ elm_str)
32: N.setAttribute(hole.name, sVal)
33: else if hole is a child node then
34: text_node = doc.createTextNode(context_valid(em_str))
35: N.appendChild(text_node)

Algorithm 1: Patching using Safe DOM Construction

be imposed on the runtime string (See Figure 3 Step 4). Previous
works also face this challenge in the context of server-side code
and there are several ways to handle this. ScriptGard [53] uses the
code path and the calling context in the program to determine the
appropriate choice of structure. In our work, we resolve ambiguity
in contexts using the DOM position — the identity of the parent
DOM node to which the newly-generated DOM sub-tree will be
attached. If the DOM position is the same for two templates at
a patch-point, DEXTERJS can record information about the path
context along with the template. This is obtained by path profil-
ing during pre-deployment testing. In this case, we can use the
path context at runtime to resolve the ambiguity as done in Script-
Gard [53]. Dynamic path context aggregation requires additional
profiling, but is only necessary in an extremely small number of
cases where the DOM position alone is not sufficient to resolve
the ambiguity. A richer and more expressive template language
could be used instead of a whitelisted template database to account
for these variations. However, in our evaluation, we have not seen
this selection ambiguity given the relatively small number of patch-
points per web application, i.e., we always have a unique patch to
apply at each patch-point based on the DOM position.

4. JS ANALYSIS ENGINE
DEXTERJS system analyzes all the JavaScript code dynamically

to determine if the application is unsafe, specifically if any attacker-
controlled value is used as code to generate HTML. We design our
own information flow analysis for tracking attacker-controlled data.

4.1 Technical Challenges
Several previous works propose both static and dynamic analysis

of JavaScript [44, 54, 56]. However, several challenges arise when
achieving the same goals in the context of auto-patching problem.

• Browser independent JavaScript analysis. For compatibility
and effectiveness, the analysis and patching logic should not
be integrated in a specific browser or a JavaScript engine. An
alternative is to leverage the language’s object level abstrac-
tion which makes the approach more generic [44].

• Complete mediation on executing JavaScript. JavaScript sup-
ports dynamic code generation via eval, reflection, etc. To
hot-patch all the DOM-based XSS vulnerabilities in a given
web application, it is essential to instrument code generated
through these constructs on-the-fly.

• Robust handling of complete JavaScript features. JavaScript
has many complex built-in constructs, native functions, and
primitive operators. It is crucial to handle these language se-
mantics in our instrumentation to preserve the original func-
tionality of the application.

4.2 Design: Taint-Tracking Engine
Source Rewriting. One of the main challenges in carrying out
browser-independent program analysis is that browsers vary a lot,
making such an analysis cumbersome if it is not done through
source code rewriting. Building such a fine-grained transforma-
tion system that can scale up is non-trivial. In fact, recent tools
alternatively resort to either record-replay or combine static and
dynamic techniques to tackle the challenges posed by features and
subtleties of JavaScript [44, 57, 58]. We explain how DEXTERJS
achieves robustness and a clean design in its instrumentation for
inlining taint-tracking logic, some of which build upon the ideas
of object wrapping previously proposed [44] but incorporate many
additional new strategies to maintain complete compatibility with
real JavaScript code.

DEXTERJS performs source-to-source rewriting for character-
precise taint-tracking for strings. It instruments JavaScript on the
fly via a proxy server as the website is executed under the given test
harness. The taint propagation logic and metadata is kept within
the website’s execution context in the browser. Such heavy-weight
instrumentation is quite intrusive and we explain two key choices
DEXTERJS makes regarding where to keep taint metadata and how
to instrument each string operation in the JavaScript application.
The subtleties of preserving application correctness in the presence
of such instrumentation is discussed in Section 4.3.

4.2.1 Attaching Taint Metadata
Dynamic taint analysis needs to store the taint information for

primarily strings in the program to detect XSS flows [48]. In this
section, we discuss various approaches to store taint metadata which
do not scale and how our solution of object wrapping is both scal-
able and plays well with JavaScript semantics.
Storage in a separate namespace. Traditional dynamic taint anal-
ysis for languages such as C store the taint metadata in a separate
namespace (e.g., shadow memory). This is not a viable solution,
since JavaScript cannot access the address of any variable.
Storage in a global namespace. Taint metadata can be stored in
the same namespace of the program using alpha renaming of meta-
data variables to resolve namespace conflicts. However, since scop-
ing rules are inconsistent across different browser implementations
(as we show in our evaluation), reasoning about the namespace of
a variable is not straightforward. Further, storing the taint metadata
in the global namespace quickly blows up the program’s memory
usage. Using a fixed set of variables (analogous to fixed set of reg-
isters available in the CPUs) to store the taint metadata leads to

overly complex spilling management in the instrumentation [22].
We adopt a more efficient solution that works generically for global
and function-scoped data.
Per-String Storage. In all the above strategies, the taint informa-
tion of each variable is stored in separate variables. Storing the
taint information as a property of the string would preclude costly
lookups in taint maps. This is an elegant solution which solves
scoping as well as performance challenges. We adopt this approach
with one caveat — attaching properties to primitive data types like
string literals fails silently in JavaScript (See Listing 1).

Listing 1: Infeasibility of attaching taint with string literals.
1 var a = "foo"; // a is a string literal
2 a.taint = true;
3 console.log(a.taint); // prints undefined

Listing 2: Conversion to Objects to track taint information.
1 var a = new String("foo"); // a is string object
2 a.taint = true;
3 console.log(a.taint); // prints true

Although, JavaScript does not allow adding properties to string
literals, objects have no such limitation. Therefore, a viable strat-
egy is to box the string literals to string objects and then attach the
taint property to them 4. Further this mechanism implicitly propa-
gates the taint in cases of assignments and function calls.

Hence, we convert all the string literal to string objects and then
use them to store the taint information. Note that there are subtle
differences in the semantics of String objects and String literals, as
discussed in Section 4.3.

4.2.2 Inlining Propagator Logic
The exact point of insertion of the taint propagation statements

in the instrumented code is also a crucial design choice. Naïve ap-
proaches like inserting such statements after every statement of the
original program leads to re-execution of code in our taint propaga-
tion statements, breaking the semantics of the program. Our taint
propagation logic has to be embedded at a more fine-grained level
within the original program.

To solve this challenge, DEXTERJS uses a standard feature of
JavaScript called immediately invoked function expression (or IIFE).
This feature allows a function to be defined and immediately in-
voked within a single block-scope construct, and has consistent se-
mantics in all browser implementations. An example of our instru-
mentation for the code statement in Figure 5(a) is shown in Fig-
ure 5(b).

1 var a = b() + "foo";

(a)

1 var a = (function() {
2 var rhs = b();return rhs + "foo"
3 })();

(b)
Figure 5: (a) Un-instrumented input program. (b) IIFE used to
group taint analysis statements.

Our mechanism of using IIFE has several advantages in achiev-
ing memory efficiency and nesting of instrumentation. First, it uses
function scoping, so temporary variables used in the instrumenta-
tion (rhs) are scoped within the IIFE and can be garbage collected
immediately after the IIFE finishes executing. Second, since IIFE is
a function closure, it has access to all the variables declared outside
the IIFE. For example, b can be used within the IIFE even though
it wasn’t declared within it. This preserves the original scope of the
un-instrumented statement. Third, IIFE encapsulation also extends
naturally to nesting of IIFE scopes that is necessary to compute
taint for multiple sub-expressions of a larger expression.

4Our definition is similar to the concept of Boxing in Java.

4.3 Completeness in Handling JavaScript
DEXTERJS handles a variety of practical cases for JavaScript

in the wild. We discuss the interesting challenges here and our
solution to handle these.

4.3.1 Dynamic Evaluation
JavaScript supports various dynamic code generation constructs,

like eval and the Function constructor, as well as constructs
for fetching data from external sources dynamically. At times, the
arguments to these functions are only known during runtime and
hence can be instrumented only then. To this end, the arguments to
these functions are sent back to the DEXTERJS’s instrumentation
server using XMLHttpRequest. This returns the instrumented
version of the code which is then passed to the respective function.
The input program using eval and a naïve instrumented program
of the same is shown below, with some details elided for brevity.

Listing 3: Sample code using eval
1 var code = "var a = 2;";
2 eval(code); // The value of a is 2 here

Listing 4: Naïve instrumentation strategy for eval
1 var code = "var a = 2;";
2 (function(){(
3 var _$temp1 = (code);
4 _$temp2 = new XMLHttpRequest();
5 _$temp2.open(’POST’, instrumentationServerIP,false);
6 _$temp2.send(_$temp1);
7 // _$temp2.responseText contains instrumented code
8 return eval(_$temp2.responseText);
9 })(); // a is not defined here

Recall that DEXTERJS wraps eval() using an IIFE as shown
in Listing 4. However, eval() function poses an interesting case:
any variable that is created using eval() will bound to the scope
where eval() is called. Therefore, the variable a would only
be defined within the IIFE and accessing a outside it would result
in a reference error, thereby breaking the original program seman-
tics. For such cases (e.g., instrumenting eval), where IIFE in-
strumentation results in incorrectness, we instead use a sequence
expression to group statements without creating a function scope.
Sequence expressions (syntactically (expr,. . ., expr)) com-
bines multiple expressions into a single expression [5]. The final
correct instrumentation logic for Listing 4 is shown in Listing 5.

Listing 5: Sequence Expressions to instrument eval()
1 var code = "var a = 2;";
2 (_$temp1 = (code),_$temp2 = new XMLHttpRequest(),
3 _$temp2.open(’POST’,instrumentationServerIP,false),
4 _$temp2.send(_$temp1),
5 // _$temp2.responseText contains instrumented code
6 _$temp3 = eval(_$temp2.responseText),_$temp3);
7 // The value of a is 2 here

4.3.2 Reflection
JavaScript has constructs for reflection, permitting application

code to self-inspect and manipulate program code during runtime.
For example, it can be used for listing all properties of an ob-
ject, or searching for a particular string inside a function definition.
As an example, in Listing 6, if the function foo is transformed
into another function called wrap_foo by the instrumentation,
foo.caller will return wrap_foo instead of bar.

Listing 6: Function foo() accesses its caller’s object through
caller property. temp is the string representation of bar

1 function foo() { var temp = foo.caller.toString(); }
2 function bar() { foo(); }
3 bar();

To handle reflection, DEXTERJS hooks reflection constructs and
returns values that match the original application semantics. Re-
flection is used quite commonly on popular websites; we discuss

two common idioms and how DEXTERJS handles such cases. As a
first example, Function.caller property returns the function
that invoked the specified function. Since we use IIFE to aid in
the instrumentation process, this changes the value of the caller
property and may lead to a change in the intended program behav-
ior. We ensure that we return the correct value of this property
by recursively calling it till we find an un-instrumented function.
As a second example, consider a snippet of code inspecting the
toString property of a function. The toString property of a
function returns a String representation of the function’s declara-
tion as shown in Listing 7. In this example, a.toString() re-
turns the String representation of the instrumented function whereas
the expected behavior would be to return the String representation
of the un-instrumented function. Since there is no simple way to
convert the instrumented code snippet back to its original version,
the results of each instrumentation is stored on the server. The
toString function of each function is then overridden to request
the un-instrumented version from the server, which is then used in
the program. DEXTERJS handles these and many such real-world
cases in a similar fashion.

Listing 7: Program using toString property of a function
1 function a() { foo = bar; }
2 a.toString(); // "function a(){ foo = bar; }"

4.3.3 Built-in constructs and Native Functions
Special JavaScript constructs such as value of this, for-in,

arguments and re-definitions of native functions must be pre-
served even in the instrumented version of the JavaScript program.
We discuss how DEXTERJS wraps references to these constructs to
preserve semantics.
The this variable. The value of this variable in a function
depends on how the function is called. Consider the example we
discuss in Listing 8. A naïve implementation as shown in Listing 9
can lead to incorrect behavior since the value of this will be the
global window object. This problem is fixed by using the apply
function. Using the apply function the IIFE can be passed the
correct value of the this variable as shown in Listing 10.

Listing 8: Sample program showing usage of this.
1 var obj = {};
2 obj.foo = function() { return this; }
3 console.log(obj.foo()); //prints obj

Listing 9: Naïve instrumentation for Listing 8.
1 var obj = {};
2 obj.foo = function() {
3 return (function() { return this; })(); }
4 console.log(obj.foo()); //prints window

Listing 10: Correct instrumentation for Listing 8.
1 var obj = {};
2 obj.foo = function() {
3 return (function() {return this;}).apply(this,[]);};
4 console.log(obj.foo()); //prints obj

The arguments variable. Using an IIFE changes the expected
value of the arguments variable. This is solved by passing the
correct value to the IIFE using the apply function, similar to the
way the this variable is handled.
The for-in loop. The naïve method of attaching taint to a String
object causes problems when the string object is enumerated using
a for-in loop. To overcome this problem, the taint property is set to
be non-enumerable using the defineProperty function.

Listing 11: Sample Program using for-in loop.
1 document.cookie = "ab";
2 var a = document.cookie;
3 for(foo in a) console.log(foo); // prints 0, 1

Listing 12: Naïve Instrumented for Listing 11.
1 document.cookie = "ab";
2 var a = (function() {
3 var rhs = new String(document.cookie);
4 rhs.taint = 1; //attaching taint
5 return rhs; })();
6 //uninstrumented version for simplicity
7 for(foo in a) console.log(foo);//prints 0, 1 and taint

Listing 13: Correct instrumentation for Listing 11.
1 var a = (function() {
2 var rhs = new String(document.cookie);
3 Object.defineProperty(rhs, ’taint’,
4 {enumerable: false, value: 1}); //attaching taint
5 return rhs; })();
6 //uninstrumented version for simplicity
7 for(foo in a) console.log(foo); //prints 0, 1

Re-definition of Native Functions. JavaScript allows developers
to override the behavior of native functions. For example, assume
that the developer augments the Function.prototype object
to modify the bind function, which DEXTERJS also uses inter-
nally as a part of the instrumentation logic. This can lead to an
infinite recursion since the overridden body of the bind function
would also have a call to bind. To avoid this recursive execu-
tion, DEXTERJS memoizes the bind function before any script is
executed and uses this cached function in the rest of the instrumen-
tation logic. This is applicable to all native JavaScript functions
and DEXTERJS caches all the native functions it uses in its instru-
mentation logic before using them.
Handling type and comparison operators. All string literals in
the program are converted to string objects in the instrumented pro-
gram to store taint information. String literal and objects differ
in subtle ways with respect to some operators as shown in List-
ing 14. To preserve the original semantics, we need to modify the
behavior of operators such as the typeof operator. Since Java-
Script does not support operator overriding, we modify the behav-
ior of typeof by replacing it with a function dexterTypeof.
Specifically, dexterTypeof function returns ‘string’ when an
instrumented string object is passed to it and mirrors the behavior
of typeof operator for rest of the cases. DEXTERJS attaches a
custom property to all the instrumented string objects. This helps it
to distinguish between the string objects created in the original pro-
gram (e.g., a) vs. those created by instrumented code (e.g., b). In
a similar way, DEXTERJS preserves the semantic behavior of other
operators such as ==, ===, ! =, ! ==, the instanceof oper-
ator, and the implicit comparisons in the switch-case operator.
Specifically, DEXTERJS converts the aforementioned operators to
DEXTERJS function calls in the desugaring phase before instru-
mentation, as shown in Listing 15 corresponding to the Listing 14.

Listing 14: typeof behavior for String objects and literals.
1 var a = new String("foo");
2 var b = "b";
3 typeof a; // "object"
4 typeof b; // "string"

Listing 15: Modifying behavior of typeof operator.
1 var a = new String("foo");
2 var b = new String("b"); //converted to object by

instrumentation
3 dexterTypeof(a); // "object"
4 dexterTypeof(b); // "string"

5. IMPLEMENTATION
We implement DEXTERJS as a proxy server based on node-http-

proxy and mitmproxy adding 238 lines of code [1, 14]. We build
DEXTERJS’s instrumentation, taint analysis, exploit verifier, and
auto-patching engine using the Node.js platform. Table 1 shows
the list of all the sources and sinks supported by DEXTERJS. We

Table 3: # Exploits / #Flows for usnsafe HTML generating API
SOURCE

Location.
href

Location.
hash

Location.
search

SI
N

K
S Document.write 451/67228 37/2160 204/1398

Document.writeln 22/536 2/15 39/109
HTMLElement.innerHTML 57/7890 0/23 8/401

implement our source-to-source rewriting logic with 1237 lines of
code on top of Esprima [10] and Cheerio [11] node modules.
Crawler. We utilize the Selenium framework [19] to implement
a web crawler and a simple GUI fuzzing tool. Our Python based
crawler is written in 808 lines of code and supports multiple OSes
such as Linux, Windows and OS X. We have tested the crawler on
mainstream browsers such as Chrome (v35), Firefox (v30), Inter-
net Explorer (IE 10) and Safari (v7). Our crawler crawls the web
application in a depth-first manner up-to a maximum depth of 5
and is capable of configuring the browser proxy, enforcing a page-
load time-out, browsing in private-mode and controlling browser-
specific features like the Chrome’s XSS-auditor. It is also able to
perform a wide range of interactions on websites, such as extract-
ing data from DOM nodes, filling out forms based on the input type,
triggering different events — which are necessary to dynamically
analyze features in the instrumented web application [37, 47].
Attack Generator and Verifier. We implement an attack generator
using Node.js platform in 1908 lines of code. We develop a custom
parser based on the PEG.js node module to analyze the context of
taint sink pattern [18]. We identify various attack patterns using the
XSS filter evasion cheat sheet [21] and evaluate taint sink patterns
against these to generate the actual exploit URLs.
Auto-patching. Benign templates for each page of the web ap-
plication are stored on the server as a JSON file. These templates
along with a 3KB JavaScript patch is then injected into all vulner-
able pages. The patch function is responsible for protecting the
patch-points and notifying the server of any attack attempts at run-
time through a XMLHttpRequest call.

6. EVALUATION
In this section, we show the scalability and correctness of DEX-

TERJS by instrumenting popular real-world websites and testing it
against benchmarks for DOM-based XSS. We focus on how often
insecure coding practices are being used in the websites we ana-
lyzed. We then measure the performance of our auto-patching tool
and show its efficacy in safeguarding web applications. Lastly we
analyze the source of browser-specific flows showing the need for
a tool which is able to capture flows across diverse browser back-
ends. All the experiments were conducted on a Intel Xeon R© 2.0
Ghz CPU with 64 GB RAM. We set a timeout of 3 minutes for
testing each instrumented webpage.

6.1 Scalability & Correctness of DEXTERJS
In order to test the scalability of DEXTERJS, we tested the Alexa

Top 1000 websites which were run on 4 mainstream browsers —
Chrome, Firefox, Internet Explorer and Safari in June 2014.
Micro-Benchmarking. To test the accuracy of our taint analysis
engine, we benchmarked DEXTERJS with the IBM JavaScript Se-
curity Test Suite [13] and the Firing Range testbed [12] containing
136 and 29 test cases respectively. DEXTERJS is able to detect taint
flows in all these tests expected from a dynamic analysis tool. Ex-
ploits were automatically generated for all DOM-based XSS with
URL sources with a zero false positive rate. DEXTERJS has a zero
false negative rate with respect to these benchmarks.

Table 2: Summary of distinct flows detected by DEXTERJS by crawling URLs recursively starting from the Alexa Top 1000 websites.
Each flow represents the use of data from a untrusted source (listed as columns) to a critical sink (rows).

SOURCES

Web Storage Location.
search Location Cookie Referrer Window.

top
Window.
parent

Window.
name

Location.
href

Location.
hash

post
Message Total

SI
N

K
S

Web Storage 4020 1764 340 4176 198 706 59 0 3168 25 106 14562
Script.src 160 3548 13761 5721 29742 3407 319 440 15111 191898 105 264212
Image.src 8204 5562 56497 117245 4817 6976 1396 981 74649 8421 1601 286349
Anchor.href 0 681 811 26 3929 227 0 0 8987 316 48 15025
Script.text 1 0 3 0 0 14 0 0 69 0 502 589
Cookie 560 629 15150 59467 804 381 181 9443 2295 39 80 89029
Location 0 106 296 7 18 22 10 0 114 0 0 573
setTimeout 4 1 52 17 2 256 64 1 22 0 26 445
eval 820 135 276 253 17 763 174 337 63 1 124 2963
write/writeln 826 1507 10410 3407 6032 4880 3724 2 57354 2160 0 90302
innerHTML 476 401 4356 982 35 1156 2057 2 3534 23 11 13033
Total 15071 14334 101952 191301 45594 18788 7984 11206 165366 202883 2603 777082

1 a = document.createElement(’img’);
2 if (a.hasOwnProperty(’src’)) console.log("Chrome v35.0");
3 else console.log ("Firefox v30.0");

(a)

1 try { test();
2 function test(){ console.log("Chrome v35.0");}
3 } catch (e){ console.log("Firefox v30.0"); }

(b)
1 a = "(090) 4-4"
2 var b = a.replace(/[()-\s]+/g, ’’);
3 console.log("working on Chrome");

(c)

1 var status = false;
2 if (status === false) console.log("Firefox v30.0");
3 if (status === "false") console.log("Chrome v35.0");

(d)
Figure 6: Browser-specific Taint Flows: (a) Prototype vs. Instance Property. (b) Variable Scope Hoisting. (c) Notation for Regular
Expressions. (d) Non-standard assignment to global variables.

Zero-day vulnerabilities in Alexa Top 1000 Websites. DEX-
TERJS crawled 228, 541 URLs starting from the Alexa Top 1000
websites using its built-in crawler. The total instrumentation time
was 143 hours. DEXTERJS successfully instrumented 13, 255, 378
HTML and 15, 769, 329 JavaScript files. At the end of the crawl
390, 359, 132 functions were executed which yielded a total of
777, 082 unique taint flows. The complete breakdown of flows
by sources and sinks is presented in Table 2. Of these, we focus
only on the sinks listed in Table 3 as these are the ones directly
relevant to dynamic markup generation. We restrict ourselves to
79, 760 flows which are derived from the location object and
its properties since verification of exploits from this source is easy
to automate. In this category, DEXTERJS automatically generates
working exploits for 820 distinct patch-points from 89 different do-
mains. These domains include many high-profile websites such as
comodo.com, wsj.com, washingtonpost.com, bloomberg.com, us-
agc.org (the US Green Card lottery website). The prevalence of
DOM-based XSS among these popular websites motivate tools like
DEXTERJS which finds and patches vulnerabilities automatically.
Robustness. In both our micro-benchmarks and large-scale eval-
uation, we verify the correctness of all the instrumented webpages
by ensuring that the DOM-tree of the webpage remains unchanged
after instrumentation automatically using the Selenium driver. The
Selenium driver checks that the original DOM tree rendered and
all sub-resources loaded by the benign input is the same as in the
instrumented application. Further, we confirm that the transformed
application does not throw any errors in the browser console.

6.2 Prevalence of Unsafe Coding Practices
We investigate the use of unsafe coding practices in Alexa Top

1000 sites. Out of 777, 082 tainted data flows we obtained from the
experiment, 13.3% use attacker-controlled data to generate HTML
using functions such as innerHTML, document.write and
document.writeln. This is potentially unsafe since the at-
tacker can generate arbitrary HTML content or evaluate JavaScript
code, given his control over a portion of the input to these criti-
cal code-evaluating constructs. More specifically, 0.97% of calls
to document.write, 0.78% of innerHTML calls and 9.5% of

writeln calls were confirmed to be exploitable by DEXTERJS
automatically, which justifies the need for a tool that can auto-patch
these vulnerabilities. The details about the fraction of exploitable
sinks is presented in Table 3.

On the positive, we also find several instances of safe program-
matic DOM construction methods used by developers. As Table 2
depicts, 566, 175 (72.3%) of the flows utilize (to a minimalistic ex-
tent) programmatic DOM methods. We observe that even minimal-
istic programmatic DOM construction prevents exploitability to a
large extent. For example, using the src property to set the location
of an image (getElementById(’foo’).src) is safer than
string interpolation of HTML (e.g. document.write(’<img
src="’+...)) since it prevents the attacker from escaping the
attribute context.

6.3 Performance of Auto-patched Sites
DEXTERJS successfully synthesizes patches for all the DOM-

based XSS exploits that were discovered. First, we verify the cor-
rectness of the patch by running each auto-patched website on IE,
Chrome, Safari and Firefox web browsers via the crawler. Each
time the vulnerable sink is reached, the patch is applied. We com-
pare the DOM tree generated in the browser post-patching with the
tree in the unpatched site using our Selenium-enabled infrastruc-
ture. We find that all the rendered DOM trees are similar to the
original ones under benign inputs.

We measure the page load time for the auto-patched webpages.
The overhead averaged over 10 runs is modest — ranging from
5.2% for Google Chrome, 6.45% for Internet Explorer, and 8.07%
for Mozilla Firefox. This performance overhead is due to the re-
placement of the functions at the patch-points with the patch
function and the increased number of DOM operations as compared
to the vulnerable program. For example, in our running example,
one DOM operation in the unpatched application (Line 5 of Fig-
ure 2(a)) corresponds to 7 DOM operations in the patched version
(Lines 5 - 11 in Figure 2(b)). DOM construction API are presently
unoptimized in browser implementations, which is the primary rea-
son for these overheads.

DEXTERJS-generated patches are small in size. The average size

of the patch is 3KB, whereas the average webpage size is 1.21MB.
Therefore, the code size impact to the original webpage is less than
0.3%. To test our patch security, we re-ran our initial set of attack
patterns on the auto-patched site [21]. We report that all the tested
attacks are nullified after auto-patching, as expected.

6.4 Browser-specific Taint Flows
The browser-agnostic nature of our instrumentation allows us

to measure how sensitive the results of such taint analyses are to
browser variance. To determine this, we collect a random sample
of 100 taint flows that exhibit only on some browsers for manual
investigation. A large fraction of these were missed in one browser
versus the other because of our timeout — sites execute faster in
certain browsers, thereby generating a greater number of flows in
a given time interval. However, we found 3 instances of flows
that exhibit only on Firefox and 2 only on Chrome out of a 100,
due to differences in semantics of their JavaScript implementations.
Though a 5% deviation is small, it explains how JavaScript imple-
mentations differ; therefore, formal analyses based on abstract lan-
guage semantics may be easily inconsistent with the ground truth.
We reduced the browser-unique flows to simple test cases (Fig-
ure 6) that exhibit subtle language implementation differences.

• Prototype vs. Instance Property: The specification dictates
that DOM attributes should be a part of the DOM object in-
stead of being part of their prototype. However, Chrome did
not follow the spec before version 43 (Figure 6(a)).

• In-Scope Variable Hoisting: When a function is called before
it is defined in a block scope, Chrome automatically does the
hoisting, whereas Firefox doesn’t (Figure 6(b)).

• Notation in Regular Expressions: When “-” occurs in the
middle of the regular expression, Chrome treats it as hyphen
but Firefox considers it as a range character (Figure 6(c)).

• Non-standard assignment to global variables: The behav-
ior of Chrome and some versions of Firefox are different
when global variables which are expected to be strings such
as window.status, window.name are assigned non-
string values (Figure 6(d)).

7. RELATED WORK
Preventing DOM-based XSS. Several solutions have been pro-
posed to defeat DOM-based XSS. Though solutions such as Con-
tent Security Policy (CSP) and a capability controlled DOM are
powerful [39], they require CSP or ES6 features to be supported
by the browser and hence leave older browsers vulnerable. Im-
plementing CSP in an existing application also requires extensive
rewriting, further limiting its adoption [34, 60].

Lekies et al. use precise taint analysis to find flows which are
vulnerable to DOM-based XSS similar to DEXTERJS [54]. How-
ever, since their taint analysis engine is implemented by modifying
Chromium, they can miss flows due to the implementation differ-
ences of JavaScript semantics, as we show in our evaluation. One
needs to carry out such analysis on various browser backends to
account for such variation and porting it across a diverse range of
HTML5 platforms and browser versions is an onerous task. In con-
trast to these solutions, DEXTERJS’s taint analysis engine is not
tied to any specific browser. Our patching technique employs a
learning phase to figure out the expected document structure to be
rendered on the client-side whereas the prevention technique pro-
posed by the same authors is carried out by simply blocking the
tainted flows and requires significant effort in specifying declas-
sifiers to avoid false positives [56]. DEXTERJS requires minimal
developer effort to patch the application.

Several defenses such as auto-sanitization have been integrated
in web frameworks that emit JavaScript code [30,52]. If the saniti-
zation routines in auto-sanitized code are correct, and if all client-
side code is generated using such web frameworks, these defenses
serve as a panacea to the problem. However, a majority of ex-
isting frameworks either offer no auto-sanitization or incomplete
sanitization [59]. Further, auto-sanitization approaches rely on the
correctness of sanitizers which has been a problematic assump-
tion [24, 40]. Mechanisms for using templatized or programmatic
construction of the DOM [45], which our approach also relies on,
sidesteps the assumption of correct sanitization.
JavaScript Analysis Tools. Static analysis techniques [25, 31, 35,
36, 46], dynamic analysis techniques [31, 42, 44, 48, 54] and mixed
analyses [57, 58] for JavaScript applications have been extensively
investigated. Static analysis approaches are notoriously difficult for
JavaScript applications which lack static typing, have mutable class
hierarchies, and a host of dynamic evaluation constructs, result-
ing in missing taint sources/sinks due to aliasing [46, 50]. Further,
static analysis tools often have high false positives and do not gen-
erate concrete exploits. Dynamic analysis, therefore, has proven
to be useful for taint-style security analyses. Most of dynamic
taint-style analyses have been implemented in specific browser ver-
sions [9, 32, 48, 54]. These approaches require no modification to
the original application and have been useful for conducting large-
scale analyses. However, they tend to suffer from the same set of
limitations as [54]. Source-to-source rewriting techniques offer the
ability to sidestep these limitations as pointed in several previous
works [36, 42, 44, 49, 61, 62].
Template generation and Auto-patching. Blueprint employs a
set of models (akin to our templates) to preserve the integrity of
intended document structure [45]. Similar to DEXTERJS, Blueprint
requires no browser modification. However, it is built as a defense
to secure HTML content generated by server-side code. Therefore,
it does not account for dynamic HTML generated via JavaScript at
the client-side which is required to prevent DOM-based XSS.

Our mechanism for auto-patching is conceptually related to sev-
eral solutions for preventing reflected and persistent XSS in server-
side languages. Previous studies such as ScriptGard and XSSGuard
employ server-side parsing of HTTP responses [27,53]. They rewrite
the application to enforce the intended structure. However, all of
these techniques are insufficient in protecting against DOM-based
XSS since they focus on patching server side code and not insecure
JavaScript.

8. CONCLUSION
We presented DEXTERJS, a tool for auto-patching DOM-based

XSS vulnerabilities. DEXTERJS is robust and scales to the Alexa
Top 1000 on multiple browser backends. Using DEXTERJS, we
patch hundreds of exploitable DOM-XSS vulnerabilities with a rea-
sonable performance impact, thus making analysis-driven patching
a practical alternative for securing JavaScript applications.

9. ACKNOWLEDGMENTS
We thank Benjamin Livshits, Adi Yoga Sidi Prabawa, Xinshu

Dong and Amarnath Ravikumar for their constructive feedback on
the paper. This research is supported in part by the National Re-
search Foundation, Prime Minister’s Office, Singapore under its
National Cybersecurity R&D Program (Award No. NRF2014NCR-
NCR001-21) and administered by the National Cybersecurity R&D
Directorate. This work is supported in part by a university research
grant from Intel.

10. REFERENCES
[1] A full-featured http proxy for node.js.

http://goo.gl/fpPfum.
[2] A new modular browser.

https://github.com/breach/breach_core.
[3] A Twitter DomXSS, a wrong fix and something more.

http://goo.gl/dHF457.
[4] Analyzing a Dom-Based XSS in Yahoo!

http://goo.gl/yXKtf4.
[5] Comma Operator - JavaScript | MDN.

http://goo.gl/M738e.
[6] Crafty - JavaScript HTML5 Game Engine.

craftyjs.com/.
[7] DexterJS online. https://dexterjs.io/.
[8] DOM XSS on Google Plus One Button.

http://goo.gl/ohRAkM.
[9] DominatorPro: Securing Next Generation of Web

Applications.
https://dominator.mindedsecurity.com/.

[10] ECMAScript parsing infrastructure for multipurpose
analysis. http://esprima.org/.

[11] Fast, flexible, and lean implementation of core jQuery
designed specifically for the server.
https://github.com/cheeriojs/cheerio.

[12] Firing Range.
http://public-firing-range.appspot.com/.

[13] LaBaSec: Language-based Security. http:
//researcher.watson.ibm.com/researcher/
view_group_subpage.php?id=1598.

[14] Mitmproxy: a man-in-the-middle proxy.
http://mitmproxy.org/.

[15] Mobile/Tablet Market Share. http://goo.gl/Pcu492.
[16] node-os: First operating system powered by npm.

http://node-os.com/.
[17] OS.js: JavaScript Cloud/Web Desktop Platform.

http://osjsv2.0o.no/.
[18] PEG.js - Parser Generator for JavaScript.

http://pegjs.majda.cz/.
[19] SeleniumHQ Browser Automation.

http://seleniumhq.org/.
[20] The Chromium Blog. http://goo.gl/MIEOTW.
[21] XSS Filter Evasion Cheat Sheet.

https://www.owasp.org/index.php/XSS_
Filter_Evasion_Cheat_Sheet.

[22] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley, 1986.

[23] D. Akhawe, F. Li, W. He, P. Saxena, and D. Song.
Data-confined HTML5 applications. In Computer Security -
ESORICS 2013 - 18th European Symposium on Research in
Computer Security, Egham, UK, September 9-13, 2013.
Proceedings, pages 736–754, 2013.

[24] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing Static
and Dynamic Analysis to Validate Sanitization in Web
Applications. In 2008 IEEE Symposium on Security and
Privacy (S&P 2008), 18-21 May 2008, Oakland, California,
USA, pages 387–401. IEEE Computer Society, 2008.

[25] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett.
VEX: Vetting Browser Extensions for Security
Vulnerabilities. In 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings,

pages 339–354. USENIX Association, 2010.
[26] D. Bates, A. Barth, and C. Jackson. Regular Expressions

Considered Harmful in Client-Side XSS Filters. In
Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, Raleigh, North Carolina, USA, April
26-30, 2010, pages 91–100. ACM, 2010.

[27] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD: Precise
Dynamic Prevention of Cross-Site Scripting Attacks. In
Detection of Intrusions and Malware, and Vulnerability
Assessment, 5th International Conference, DIMVA 2008,
Paris, France, July 10-11, 2008. Proceedings, volume 5137
of Lecture Notes in Computer Science. Springer, 2008.

[28] S. Bratus, J. Oakley, A. Ramaswamy, S. W. Smith, and M. E.
Locasto. Katana: Towards Patching as a Runtime Part of the
Compiler-Linker-Loader Toolchain. IJSSE, 1(3):1–17, 2010.

[29] E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang. You
Can’t Be Me: Enabling Trusted Paths and User Sub-origins
in Web Browsers. In Research in Attacks, Intrusions and
Defenses, pages 150–171. Springer, 2014.

[30] J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and D. Evans.
GuardRails: A Data-Centric Web Application Security
Framework. In 2nd USENIX Conference on Web Application
Development, WebApps’11, Portland, Oregon, USA, June
15-16, 2011. USENIX Association, 2011.

[31] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged
Information Flow for JavaScript. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland,
June 15-21, 2009, pages 50–62. ACM, 2009.

[32] M. Dhawan and V. Ganapathy. Analyzing Information Flow
in JavaScript-Based Browser Extensions. In Twenty-Fifth
Annual Computer Security Applications Conference, ACSAC
2009, Honolulu, Hawaii, 7-11 December 2009, pages
382–391. IEEE Computer Society, 2009.

[33] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado,
C. Kruegel, and G. Vigna. deDacota: Toward Preventing
Server-Side XSS via Automatic Code and Data Separation.
In 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pages 1205–1216. ACM, 2013.

[34] M. Fazzini, P. Saxena, and A. Orso. Autocsp: Automatically
retrofitting csp to web applications. In Proceedings of the
37th IEEE and ACM SIGSOFT International Conference on
Software Engineering (ICSE 2015), 2015.

[35] S. Guarnieri and V. B. Livshits. GATEKEEPER: Mostly
Static Enforcement of Security and Reliability Policies for
JavaScript Code. In 18th USENIX Security Symposium,
Montreal, Canada, August 10-14, 2009, Proceedings, pages
151–168. USENIX Association, 2009.

[36] A. Guha, S. Krishnamurthi, and T. Jim. Using Static
Analysis for Ajax Intrusion Detection. In Proceedings of the
18th International Conference on World Wide Web, WWW
2009, Madrid, Spain, April 20-24, 2009. ACM, 2009.

[37] W. G. Halfond, S. Anand, and A. Orso. Precise Interface
Identification to Improve Testing and Analysis of Web
Applications. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA ’09,
pages 285–296, New York, NY, USA, 2009. ACM.

[38] W. G. J. Halfond, A. Orso, and P. Manolios. Using Positive
Tainting and Syntax-Aware Evaluation to Counter SQL
Injection Attacks. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software

Engineering, FSE 2006, Portland, Oregon, USA, November
5-11, 2006, pages 175–185. ACM, 2006.

[39] M. Heiderich. Towards elimination of xss attacks with a
trusted and capability controlled dom. Ruhr-University
Bochum, 2012.

[40] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes. Fast and Precise Sanitizer Analysis with BEK. In
20th USENIX Security Symposium, San Francisco, CA, USA,
August 8-12, 2011, Proceedings, 2011.

[41] Jensen, Simon Holm and Jonsson, Peter A. and Møller,
Anders. Remedying the Eval That Men Do. In Proceedings
of the 2012 International Symposium on Software Testing
and Analysis, ISSTA 2012, pages 34–44. ACM, 2012.

[42] E. Kiciman and V. B. Livshits. AjaxScope: A Platform for
Remotely Monitoring the Client-Side Behavior of Web 2.0
Applications. In Proceedings of the 21st ACM Symposium on
Operating Systems Principles 2007, SOSP 2007, Stevenson,
Washington, USA, October 14-17, 2007. ACM, 2007.

[43] A. Klein. DOM Based Cross Site Scripting or XSS of the
Third Kind. Web Application Security Consortium, 2005.

[44] Koushik Sen and Swaroop Kalasapur and Tasneem G. Brutch
and Simon Gibbs. Jalangi: A Selective Record-Replay and
Dynamic Analysis Framework for JavaScript. In Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, 2013.

[45] M. T. Louw and V. N. Venkatakrishnan. Blueprint: Robust
Prevention of Cross-site Scripting Attacks for Existing
Browsers. In 30th IEEE Symposium on Security and Privacy
(S&P 2009), 17-20 May 2009, Oakland, California, USA,
pages 331–346. IEEE Computer Society, 2009.

[46] M. Madsen, B. Livshits, and M. Fanning. Practical Static
Analysis of JavaScript Applications in the Presence of
Frameworks and Libraries. In Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013, pages 499–509. ACM, 2013.

[47] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling AJAX
by inferring user interface state changes. In Proceedings of
the Eighth International Conference on Web Engineering,
ICWE 2008, 14-18 July 2008, Yorktown Heights, New York,
USA, pages 122–134. IEEE, 2008.

[48] Prateek Saxena and Steve Hanna and Pongsin Poosankam
and Dawn Song. FLAX: Systematic Discovery of Client-side
Validation Vulnerabilities in Rich Web Applications. In
Proceedings of the Network and Distributed System Security
Symposium, NDSS 2010, San Diego, California, USA, 28th
February - 3rd March 2010, 2010.

[49] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. BrowserShield: Vulnerability-Driven Filtering of
Dynamic HTML. volume 1, 2007.

[50] S. Saha, S. Jin, and K.-G. Doh. Detection of dom-based
cross-site scripting by analyzing dynamically extracted
scripts. In The 6th International Conference on Information
Security and Assurance, 2012.

[51] M. Samuel and Ú. Erlingsson. Let’s Parse to Prevent
Pwnage. In 5th USENIX Workshop on Large-Scale Exploits
and Emergent Threats, LEET ’12, San Jose, CA, USA, April
24, 2012. USENIX Association, 2012.

[52] M. Samuel, P. Saxena, and D. Song. Context-Sensitive

Auto-Sanitization in Web Templating Languages Using Type
Qualifiers. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pages
587–600. ACM, 2011.

[53] P. Saxena, D. Molnar, and B. Livshits. ScriptGard:
Automatic Context-Sensitive Sanitization for Large-Scale
Legacy Web Applications. In Proceedings of the 18th ACM
Conference on Computer and Communications Security,
CCS 2011, Chicago, Illinois, USA, October 17-21, 2011,
pages 601–614. ACM, 2011.

[54] Sebastian Lekies and Ben Stock and Martin Johns. 25
Million Flows Later - Large-scale Detection of DOM-based
XSS. In 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pages 1193–1204. ACM, 2013.

[55] S. Stamm, B. Sterne, and G. Markham. Reining in the Web
with Content Security Policy. In Proceedings of the 19th
International Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010, pages
921–930. ACM, 2010.

[56] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns.
Precise Client-side Protection against DOM-based
Cross-Site Scripting. In Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22,
2014., pages 655–670. USENIX Association, 2014.

[57] O. Tripp, P. Ferrara, and M. Pistoia. Hybrid security analysis
of web javascript code via dynamic partial evaluation. In
International Symposium on Software Testing and Analysis,
ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014, pages
49–59. ACM, 2014.

[58] S. Wei and B. G. Ryder. Practical Blended Taint Analysis for
JavaScript. In International Symposium on Software Testing
and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20,
2013, pages 336–346. ACM, 2013.

[59] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, E. C. R.
Shin, and D. Song. A Systematic Analysis of XSS
Sanitization in Web Application Frameworks. In Computer
Security - ESORICS 2011 - 16th European Symposium on
Research in Computer Security, Leuven, Belgium, September
12-14, 2011. Proceedings, volume 6879 of Lecture Notes in
Computer Science, pages 150–171. Springer, 2011.

[60] M. Weissbacher, T. Lauinger, and W. K. Robertson. Why Is
CSP Failing? Trends and Challenges in CSP Adoption. In
Research in Attacks, Intrusions and Defenses - 17th
International Symposium, RAID 2014, Gothenburg, Sweden,
September 17-19, 2014. Proceedings, volume 8688 of
Lecture Notes in Computer Science, pages 212–233.
Springer, 2014.

[61] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna. ZigZag: Automatically Hardening Web
Applications Against Client-side Validation Vulnerabilities.
In 24th USENIX Security Symposium (USENIX Security 15).
USENIX Association.

[62] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript
Instrumentation for Browser Security. In Proceedings of the
34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2007, Nice, France,
January 17-19, 2007, pages 237–249, 2007.

