
1540-7993/20©2020 IEEE Copublished by the IEEE Computer and Reliability Societies September/October 2020 47

HARDWARE-ASSISTED SECURITY

David Kohlbrenner, Shweta Shinde, Dayeol Lee, Krste Asanović,
and Dawn Song | University of California, Berkeley

Trusted execution environments (TEEs) are a growing part of the security ecosystem. Unfortunately,
widely available TEEs are hampered by closed designs and a lack of flexibility. We outline the challenges
to TEEs, advocate for extensible and portable open TEEs, and detail current efforts.

T rusted execution environments (TEEs), a rapidly
developing part of the security ecosystem, are

deployed on nearly every ARM smartphone, with cloud
providers offering early support for Intel’s and AMD’s
CPU TEEs. TEEs provide exceptional levels of isolation
and protection to high-risk software while still sharing
hardware and other resources with untrusted compo-
nents. At their best, TEEs promise significant reduc-
tions in the number and size of trusted components and
the elimination of trust in the hardware operator, even
for remote computation. As with the advent of widely
available hardware virtualization support, TEEs open
up new usage models for shared hardware.

However, the demands on TEEs are quickly exceed-
ing the capabilities established by commercially acces-
sible options. To compound this, the closed-source and
deep hardware integration in these designs limits their
ability to evolve. We believe that the progress TEEs have
made, while extensive, has been hampered by closed
designs and a lack of flexibility. We thus advocate for
open TEEs, systems that are open source, extensible,

portable, and amenable to research as well as produc-
tization. We believe that the impact of other open
efforts like RISC-V and Linux show potential gains
if TEEs are opened up. In this article, we provide a
background on TEE use cases and development, the
challenges we see them facing, and the technical shifts
for which we advocate.

Why Use TEEs?
Today’s software stacks include a large amount of inher-
ent design complexity. Even simple and sensitive appli-
cations, like a cryptographic tool, depend on numerous
libraries and operating system (OS) services. Further,
these code components are sourced from a wide vari-
ety of entities (e.g., standard libraries, device drivers,
hypervisors, and kernels), many without a specific secu-
rity focus. To compound this, the end user often does
not have control over the infrastructure and software
used for the remote deployment of their applications
in cloud computing. Thus, most user applications have
no choice other than to trust the underlying privileged
computing stack. For a standard Linux environment on
a bare-metal machine, this amounts to ~10 million lines
of code or more. More importantly, it is well established

Digital Object Identifier 10.1109/MSEC.2020.2990649
Date of current version: 28 May 2020

Building Open Trusted
Execution Environments

48 IEEE Security & Privacy September/October 2020

HARDWARE-ASSISTED SECURITY

that larger code bases are significantly harder to validate
as “bug-free.” Empirically, all of the code components
in the described stack have been regularly susceptible
to severe vulnerabilities. TEEs attempt to mitigate this
ever-increasing number of components by reducing the
amount of trusted code and other components, com-
monly referred to as the trusted computing base (TCB).

Partitioning
The partner problem to this is resource sharing, where
an adversary (e.g., another cloud tenant) may oper-
ate on the same hardware as you. The solution to
this, privilege separation, has long been a fundamen-
tal security principle generally solved by a privileged
OS. Hardware supports this well, with in-built separa-
tion for the kernel and user-space software (e.g., rings
0 and 3 in Intel, exception levels 1 and 0 in ARM, and
S- and U-modes in RISC-V). Extending the separation
principle, user applications can be further partitioned,
where parts of code and data that need stronger secu-
rity to execute are in an isolated region protected
from the rest of the program. This is accomplished
in software via partitioning into multiple processes
or through sandboxing methods. For example, con-
sider a web server that uses HTTPS for connections
that need secure cryptographic keys to establish
secure channels.

A typical web server comprises thousands of lines
of code, however, only a few functions require access
to the cryptographic keys. Here, isolating the parts of
data (that is, cryptographic keys) and code (in essence,
cryptographic library implementation) significantly
reduces the TCB and the attack surface for the most
critical components. The advantage of this identifica-
tion and partitioning is that even if such secure iso-
lation incurs performance penalties, it is affordable
because only a small part of the application requires
such isolation.

Reducing and Protecting the TCB
Principles such as privilege separation and program
partitioning help reduce the amount of code that needs
safeguarding. There are several well-established tech-
niques used to protect pieces of code and data. Purely
cryptographic approaches (e.g., full/partial homo-
morphic encryption and multiparty computation)
allow for direct operations over encrypted data to pro-
duce encrypted outputs. Because the data are never
decrypted, all of the code processing the data need not
be trusted. Although promising, these techniques are
expensive and limited in expressiveness to the extent
that they are not yet practical for all but a few real-world
applications. Alternatively, verification techniques can
ensure that the software-based isolation (e.g., a kernel

isolating user libraries) is implemented and enforced
correctly. The output of such a process is standard per-
formant code, which is much faster than purely crypto-
graphic approaches. However, such techniques are only
as strong as the model verified against and can limit the
nature of applications protected (e.g., cannot run multi-
threaded applications). Further, such verification is not
automatic and has been costly with respect to human
effort on a per-application basis. The iterative design
and implementation required by a verification effort
also adds significant costs. Lastly, purely software-based
security hardening techniques attempt to achieve com-
plete memory safety to ensure bug-free code.

Despite advances in safe programming languages
(e.g., Rust), legacy software still often uses unsafe lan-
guages (e.g., assembly and C). Scaling hardening tech-
niques to such code bases has well-known limitations
that either require solving known-hard problems (e.g.,
pointer analysis) or approximating at the cost of losing
the soundness and completeness of the analysis. More
importantly, because a single bug in a hardened code
base can eliminate all guarantees (e.g., buffer overflow
in Heartbleed), such hardening techniques are best seen
as part of a defense in depth.

A Cleaner Solution
The design philosophy of privilege separation uses a
divide-and-conquer approach. By isolating the sensi-
tive components in higher-security compartments,
it directly reduces the amount of code assumed to be
bug-free for secure operation. TEEs are an embodi-
ment of this approach to the extreme possible while still
sharing hardware. Specifically, TEEs provide a trusted
hardware primitive wherein one can execute code in
complete isolation from the rest of the software, includ-
ing otherwise privileged code (e.g., an OS). TEEs are
different from a standard ring-based hardware isola-
tion because they can isolate low-privilege code from
high-privilege code, if desired. Earlier incarnations of
TEEs aimed at simply securing the integrity of small
fractions of security-critical code (e.g., disk encryption)
or entire execution stacks (including drivers, kernels,
and user applications). Solutions such as trusted plat-
form modules (TPMs) are exemplar implementations
of these designs.

Modern and popular TEEs are more geared toward
isolating and maintaining the integrity of user code from
the rest of the software stack on the system. In these
TEEs, the reversal of isolation and trust boundaries
enables TEEs to execute small pieces of user code while
completely removing the existing software stack of hyper-
visors, OSs, device drivers, and user libraries from the
TCB. Figure 1 shows the schematic and trust model for
a legacy stack versus the modern TEE stack. TEEs block

www.computer.org/security 49

all access attempts from any non-TEE entity (e.g., an OS)
to protected TEE code and data. TEEs are able to main-
tain backward compatibility with existing legacy software
stacks not executing within a partition. For additional
safety, the TEE-bound code can and should leverage all
of the existing hardening techniques to safeguard the
smaller TCB inside the TEE. Thus, TEEs present a
realistic solution for protecting the TCB while pre-
serving scalability, performance, expressiveness, and
legacy support.

Overview

TEE Guarantees
TEEs leverage trusted hardware to enforce strong isola-
tion over code and data. TEEs must trust various entities,
such as hardware designers, manufacturers, fabrication
processes, and so on. Specifically, we assume that these
parties faithfully design the hardware features, do not
insert back doors, and that the cryptographic designs
and implementations are bug-free. TEEs ensure code
and data isolation throughout the lifecycle of a safe-
guarded process. This includes secure boot, execution,
storage, provisioning, and trusted input–output (I/O)
paths. TEEs also measure and report the content of each
stage of the system, from boot to application loading.
Finally, TEEs can attest to the validity of the execution
platform by providing a cryptographically signed proof
with relevant measurements to the remote party. Thus,
a remote party can first verify the signature and then
deploy private computation on a TEE system. Note that
solutions that provide properties, such as secure boot or
dynamic root of trust (AMD skinit and Intel TXT), are
necessary but not sufficient to instantiate TEEs. Such
systems are generally a part of TPM-based systems and
provide guarantees at the platform level, rather than at
the CPU level.

In summary, TEEs typically provide the following
three guarantees:

1. Integrity: The code and data cannot be tampered
with (e.g., by running arbitrary code within a
partition).

2. Confidentiality: The attacker cannot learn the run-
time content of the application (e.g., secret keys and
code control flow).

3. Attestation: Proof is provided to a remote party that
the environment has not been tampered with and
is safe.

Most TEEs explicitly put availability guarantees out
of scope, mainly because even the benign execution of
the OS needs complete control over system resources.
However, specific designs built on top of TEEs can
guarantee availability tailored for Real-Time Operat-
ing System deployments. Another important guaran-
tee that is not considered for all TEEs is side channels.
Because the adversary to a TEE includes privileged soft-
ware (e.g., the OS), hardware-based side channels are a
more serious threat than in a classical threat model.

Modern TEEs
TEEs derive from decades of similar efforts, but three
designs have emerged from vendors to commercial
deployment: ARM TrustZone,1 Intel Software Guard
Extensions (SGX),2 and AMD secure encrypted vir-
tualization (SEV).3 These designs are refinements
of proposals, such as XOM,4 AEGIS,5 Bastion,6 and
SecureBlue++.7 For concrete understanding, we sum-
marize the three major TEE designs in the next sections.

ARM TrustZone
This design divides the entire computing stack into two
worlds: secure and nonsecure. Sensitive applications are
run in the secure world as “trusted applications” and are
isolated from access by the normal world. Isolation is
enforced by the presence or absence of the not-secure
(NS) bit on all of the operations, e.g., peripheral
accesses, memory bus, and so forth. TrustZone-aware

AppRing 3

Ring 0–2

Hardware

Enclave App Trusted
App

Trusted
OSOS OS

VM1 VM2

HypervisorHypervisor Hypervisor

Intel SGX ARM TrustZone AMD SEV

(b) (c)

App Other
App

OS

CPU

(a) (d)

Trusted Components

Figure 1. The schematic and trust stack for (a) a legacy stack, (b) Intel SGX, (c) ARM TrustZone, and (d) AMD SEV. The
shaded components are trusted.

50 IEEE Security & Privacy September/October 2020

HARDWARE-ASSISTED SECURITY

peripherals are expected to abide by the NS bit and dis-
allow access across worlds. Although possible, Trust-
Zone does not encrypt secure-world content by default.
As TrustZone has only two hardware-enforced parti-
tions (secure and nonsecure worlds), executing mul-
tiple trusted applications requires multiplexing via a
dedicated secure-world OS. Further, the secure world
must provision and manage its own resources because
it cannot directly use services from the normal world.

Intel SGX
Intel SGX approaches the problem using a different
granularity and creates an isolated virtual address space
(an “enclave”) to execute portions of user-level code.
Each enclave is isolated from access by the normal con-
tent as well as all other enclaves. Enclave memory in
SGX is backed by encrypted random-access memory
pages, providing strong protection against adversaries
with even physical access. Notably, SGX uses Merkle
tree constructions managed in hardware to enforce
integrity protection as well as confidentiality on pro-
tected memory. Because these enclaves still run on top
of an untrusted OS and an untrusted host application,
they must rely on the rest of the (potentially malicious)
computing stack for resource management.

AMD SEV
The AMD SEV design takes yet a third approach and
is focused on isolating entire virtual machines (VMs)
from an untrusted hypervisor. SEV extends support
for encrypted memory operations based on keys in the
memory controller. By applying unique, nonvisible keys
to each VM, SEV ensures that the hypervisor cannot
inspect the content of the VMs it services. This protects
entire VMs, rather than specific user-level applications
and is thus more targeted at protection between the
tenants in cloud environments. SEV has not histori-
cally supported memory integrity protections but has
announced a further extension (SEV-SNP) that will
offer some form of integrity.

Figure 1 shows the trust differences of these three
designs. All of the designs use a secure boot process to
establish root of trust and can perform attestation pro-
cesses. The trusted environments created by TEEs are
commonly referred to as secure enclaves, a term popular-
ized by Intel SGX. The user code is thus said to execute
inside a secure enclave.

Challenges to TEEs
As TEEs are prevalent in many commodity CPUs,
they provide a strong set of security options across a
diverse set of hardware. However, TEEs have not always
managed to meet the security and flexibility demands
required of them.

The Problem With Monolithic TEEs
Existing commercial TEEs are tailored to specific hard-
ware designs by the relevant manufacturers. Under-
standably, this is driven by the security challenges that
manufacturers see as pressing to its customers. This can
be seen in the way a given TEE determines how to split
trusted from untrusted, the threats it addresses, how
keys and trust are established, and what happens when a
compromise occurs. As a result of this approach, TEEs,
such as SGX, SEV, and to a lesser extent, TrustZone, are
monolithic, meaning that they provide a complete and
static solution from threat model to application inter-
face. For applications that match these expectations,
monolithic TEEs provide an attractive option for a
secure system.

However, the space of desired, and possible, appli-
cation needs far outstrips the design space occupied by
monolithic TEEs. With no ability to change the funda-
mental tradeoffs offered by a closed system like SGX,
an innovative design is stuck layering unwieldy soft-
ware stacks on top to work around limits. We believe
that these limitations have slowed and constrained
innovation in TEE internals. Experimental designs
that have emerged from these constraints required sig-
nificant reimplementations to merely simulate proof
of concepts. Even the simplest design or implementa-
tion changes adopted have been delayed and subject to
long timelines at the mercy of a few hardware vendors.
Fundamentally, nontechnical limitations have posed a
major hurdle in TEE growth and adoption.

Subverting TEE Security Guarantees
TEEs, like any other hardware and software artifact,
are not immune to vulnerabilities; however, vulner-
abilities in the trusted components affect TEEs more
severely because of their expansive threat model. Note
that software-level vulnerabilities in most components
on the system (e.g., kernel bugs) have no effect on TEEs
because they are considered untrusted. On the other
hand, TEEs supporting firmware and basic I/O system
(BIOS)-level components are trusted; bugs in the soft-
ware at these layers may potentially compromise TEE
guarantees. Thus, one of the design goals has been to
reduce the amount of trusted software that is assumed
to be bug-free.

TEE designs have gone wrong at several levels. This
includes TPM flaws, a lack of integrity protections in
AMD SEV, software infrastructure design bugs (e.g.,
SDKs, drivers, BIOS, and trusted libraries), and the
fundamental limitations on underlying cryptographic
protocols or assumptions (e.g., attestation design or
anonymity attacks). They have further been subjected
to new and unanticipated side channels (e.g., con-
trol channels in Intel SGX), the amplified effects of

www.computer.org/security 51

traditional attacks (e.g., cache attacks), emerging attacks
(e.g., speculative side channels), and novel applications
of well-known theoretical attacks (e.g., Iago attacks).

Implementation bugs in TEEs are less common
or known, perhaps because most of them are closed
source. As a recent example, an implementation bug
in processors with Intel SGX along with Intel Proces-
sor Graphics [Common Vulnerability and Exposure
(CVE)-2019-0117] leaked enclave information via
DWORD0 and DWORD1 of a cache line. A quick survey
of CVEs shows 10 and 49 vulnerabilities affecting SGX
and TrustZone, respectively. We point out that other than
publicly filed CVEs, there are several fundamental imple-
mentation bugs that are continuously iterated on, nota-
bly VM state protections in AMD SEV. All of the TEEs
face challenges in verifying the correctness and safety of
their most privileged components, but in closed-source
designs, the community has a limited ability to engage.

To their credit, TEEs’ R&D efforts have shown
an agile and rapid response to most of the design
and implementation threats. Even when rolling out
hardware-level fixes to proprietary hardware is cumber-
some, researchers have been successful in prototyping
the mitigation techniques in principle. In comparison,
coming up with patches for buggy software components
has been relatively straightforward. The major hurdles
in their discovery and mitigation have almost always
been the inability to inspect causes and then indepen-
dently test or deploy fixes. Thus far, TEE designers and
manufacturers have been cognizant of flaws communi-
cated via these feedback loops and have shown initiative
in addressing them.

Expanding and Accelerating
the Adoption of TEEs
The positive takeaway, despite threats to the validity
of TEE security, is the evidence showing that there is
a high demand for TEEs. Nearly all smartphones now
employ some form of TEE (TrustZone or Apple’s
design), multiple companies offer products for SGX
systems (Graphene, Fortanix, and so on), and major
academic security conferences publish significant num-
bers of TEE-based designs and proposed modifications.
This leads us to believe that a better way of designing
and implementing TEEs will certainly accelerate their
innovation and adoption. To this end, our main obser-
vations are fourfold. First, there is a diverse set of plat-
forms and use cases that are not covered by existing
TEEs. Embedded platforms are restricted to ARM’s
vision for TEEs and servers to AMD and Intel’s specific
threat models. Most of the effort at the moment is dedi-
cated to making these modifications on a case-by-case
basis. Second, porting legacy code is not easy or obvi-
ous because of the restrictions enforced by TEEs (e.g.,

syscalls are not supported in Intel SGX). Third, any
design that requires hardware-level changes has a higher
barrier to entry. For example, it is nearly impossible to
“backport” many changes to older hardware. Finally,
because TEEs do not cater to future platforms, they
pose uncertainty as to what TEE designs will appear
in future devices. In summary, manufacturers are a
single point of failure and bottleneck. To make matters
worse, they are the root of trust. This combination is a
long-term threat to the advancement of TEEs.

Open TEEs

Our Proposal
We believe that future TEEs will benefit greatly from
being as open as possible in access, scrutiny, and exten-
sion. We envision an open-by-design system that is eas-
ily adapted to new demands. With modularity baked
into the design principles, we can take the established
TEE primitives and methods that are known to work
well and integrate them as needed. We hope that open
TEEs will thrive along with open hardware and other
open infrastructure. This includes supporting existing
tools for formal verification, which has already shown
benefits in efforts like Komodo. To us, open, in this con-
text, means several things:

 ■ Open source: The core of the TEE must be open
source and available for developers and users to exam-
ine. Without this, trust is further centralized in the
developer of the TEE, and it cannot be independently
evaluated. This is also critical for verification efforts.

 ■ Flexible: TEEs should be easily modified, repurposed,
and updated. We have seen that, thus far, commercial
TEEs have tended to be overly focused on a specific
use case. A flexible TEE should build complexity trad-
eoffs and modularity into the core of the TEE system
rather than leave it to later efforts.

 ■ Portable: New TEE systems should be as hardware
agnostic as possible. Relying on commonly imple-
mented standards, rather than unique hardware sup-
port, allows for improvements to be applied widely.

 ■ Applicable to research and industry: The more open
a TEE system is, the easier it is to make advances in
research prototypes and apply them to industrial
products.

Toward Modular TEEs
From a technical standpoint, TEEs can satisfy the
desirable requirements listed in the previous section
by embracing a modular design as opposed to a mono-
lithic one (e.g., as done in microkernels). A modular
TEE is one in which the decisions involving its threat
model and functionality are not set by the hardware

52 IEEE Security & Privacy September/October 2020

HARDWARE-ASSISTED SECURITY

manufacturer at design time, but by multiple parties,
each modifying well-defined layers of the system.

This requires rethinking and redesigning exist-
ing tightly coupled components and building blocks.
Once we achieve this, we can easily adapt a TEE to a
use case, rather than adapting use cases to TEEs as is
the norm today. A modular design will make it easier
to integrate open source contributions and proprietary
modules for products. More importantly, it will simplify
the security arguments and help make additions ame-
nable to verification. In fact, several efforts in this direc-
tion have already showed promising results. We provide
pointwise examples of effort in this direction as well
as the challenges faced and the technical approaches
employed to overcome them.

Current Efforts
Recent projects have built the groundwork for either
modular or open TEE systems by reusing existing build-
ing blocks. Komodo is one such modular system based
on ARM TrustZone.8 The majority of TrustZone-based
systems were designed to operate on a “two-worlds”
model, with a full OS operating in each. Instead,
Komodo uses a small, but maximum, privilege monitor
component to multiplex the “secure world” into many
independent user-level enclaves. This approach is por-
table to a variety of TrustZone-enabled platforms and
makes few assumptions about the applications that will
make use of it. A significant focus of this effort is to pro-
mote modularity in enclave features and defenses by
separating the hardware support (TrustZone) from the
software support. More importantly, Komodo show-
cases the feasibility of verification as a result of decou-
pling hardware and software. On the openness front,
Sanctum9 is an open source TEE built on RISC-V, an
open source Instruction Set Architecture. It resembles
Intel SGX design but makes several novel security
improvements, including side-channel defenses that
are deemed out of scope by SGX at the cost of required
hardware changes. MI6,10 a follow-up to Sanctum, adds
an additional layer of speculative side-channel defenses.

Hardware Integration Challenges
Apart from openness and modularity at the software
layer, TEE systems require significant support from
security features at the hardware layer. Intel SGX is
built entirely in microcode and employs custom hard-
ware additions tailored for performance (e.g., memory
encryption engine11). Although such proprietary opti-
mizations impart performance benefits, they obscure
the internals of SGX. Worse yet, they lock SGX into a
limited set of processors even within the Intel ecosys-
tem. In comparison, ARM TrustZone offers relative
flexibility in hardware peripherals and extensions. It

supports multiple classes of ARM cores with a variety
of optional hardware modules such as custom memory
controllers (e.g., the TrustZone Address Space Control-
ler). This has led to rapid innovation in TrustZone-based
TEE designs and the subsequent adoption in commer-
cial products (e.g., mobiles), despite the constraints
from ARM. A larger degree of openness will foster and
accelerate innovations in hardware including systems
on chip, architectural/microarchitectural components,
accelerators, and controllers. The vulnerabilities in
TEEs present an additional challenge to closed TEEs.
It is nearly impossible for vendors to fully disclose the
details of a vulnerability and the subsequent fix for pro-
prietary hardware without exposing internals. Hence,
even if manufacturers are willing to share new design
details, business needs prevent them and thus make it
difficult for users and developers to trust them.

Hardware Modularity
We advocate for modularity, not only at the software
layer but also at the hardware layer. By allowing the
management of TEEs to evolve in software, indepen-
dent of hardware revisions and manufacturing, we can
accelerate TEE development and increase trust. This
poses several technical and nontechnical challenges
from an integration perspective.

The hardware guarantees for TEEs require unique
defensive mechanisms. The challenge is in finding
the right balance and abstraction such that the hard-
ware primitives can be widely available and still sup-
port strong isolation and attestation. Building on the
smallest possible set of hardware requirements while
affording for future additions and optional features
is an explicit objective of both Komodo (on ARM)8
and Keystone (on RISC-V).12 The end goal of these
types of projects is to decouple the specific hardware
from the TEE system, hopefully allowing for new
hardware to be trivially added. The partner to these
TEEs is open hardware efforts, such as RISC-V, that
allow easy customization of IP blocks. A manufac-
turer can then assemble use-case-specific configura-
tions while maintaining a standard hardware interface
and modular software support. Such a design requires
no application-level changes or redevelopment of
software. For instance, a specific device can include
a memory encryption engine if it is expected to face
physical adversaries without changes to the software
that already targets the base TEE system.

Ensuring the security of TEEs built on top for such
varied hardware is more nuanced. The TEE system
must be capable of using additional hardware features
in a transparent way, e.g., including information about
their configuration in the attestation report. For exam-
ple, if the core is capable of aggressive speculation, the

www.computer.org/security 53

TEE must more carefully manage other defenses and
may need to disable speculation.

Smart integration with open hardware solves many
challenges and encourages community trust. A TEE
that is flexible on the specific hardware implementation
allows for independent experimentation by manufac-
turers, operators, and developers.

Open TEE Middleware
Another approach taken by the community has been
to create TEE middleware designed to enable appli-
cations to be developed against a platform-agnostic
model. Google Asylo (https://asylo.dev/) and (for-
mally Microsoft’s) OpenEnclave (https://openenclave.
io/) are the two most popular frameworks available.
Both are open source, support Intel SGX systems, and
have begun adding support for ARM TrustZone. These
offer a flexible and significantly improved interface for
application developers targeting enclaved execution at
the cost of additional layers of abstraction and code. For
example, OpenEnclave’s TrustZone support requires
the use of the Open Portable Trusted Execution Envi-
ronment (OP-TEE) an open source secure-world OS
for TrustZone (https://www.op-tee.org/). The stack
for an application running on ARM with OpenEnclave
now includes the TrustZone hardware, OP-TEE OS,
the OpenEnclave framework, and any needed libraries.
As the number of frameworks, libraries, and vendors
involved grows, the objective of minimizing the TCB
becomes far more difficult. It is still early for all of these
frameworks, and it will take integration for several dif-
ferent platform’s TEE mechanisms to see whether the
promise holds up.

The Keystone Framework
We envision TEEs as an abstraction that guaran-
tees a set of security properties (e.g., confidential-
ity and integrity). The corresponding trustworthy
hardware is expected to provide several fundamen-
tal TEE operations (e.g., root of trust, secure boot,
secure key store, and attestation) to achieve these
guarantees. However, as we have summarized pre-
viously, the task of enabling meaningful use cases
(e.g., executing applications) on top of these TEEs
has dictated both the hardware and software imple-
mentations. Our insight is to decouple the hardware
guarantees from the software abstractions required
to enable specific use cases. Concretely, we propose
focusing on identifying the basic primitives that
a TEE requires to provide guarantees and expect
the hardware to support these. We can then com-
pose these TEE building blocks and use software
to tailor the design for the needs of each use case.
While doing so, we ensure the high-level security

properties expected from a TEE abstraction with the
smallest TCB footprint.

This is complementary to standardization efforts
[e.g., Global Platform (https://globalplatform.org/)].
These efforts are beneficial for outlining what con-
stitutes a TEE (e.g., for certification) and help retain
interoperability across various TEE implementations
via common interfaces. These proposals define the
interaction with a TEE but do not solve the under-
lying technical challenges to actually achieve a secure
TEE implementation.

In spirit, our proposal is more aligned with efforts
such as Komodo; however, we select a different set of
primitives (outlined in the following sections) because
our primary goal is to achieve the fast prototyping of
new TEE designs. These differences empower us to
build a more flexible system on RISC-V, rather than on
TrustZone.

To this end, our project, the Keystone TEE Frame-
work,12 endeavors to solve many of the discussed
challenges by providing a platform for future TEE
development. Keystone consists of a set of software
components, guidelines, and tooling that allows for the
creation of TEEs for standard RISC-V-based platforms.
As in SGX-style enclaves, Keystone isolates each appli-
cation into a distinct partition at runtime. Although
SGX requires the host to do all of the resource manage-
ment, Keystone allows each enclave to execute user- and
supervisor-level code. It uses a simple and extensible
reference monitor (the Security Monitor)13 similar in
concept to Komodo and Sanctum, running below the
host OS to enforce TEE security guarantees.

Instantiating a TEE
Given a specific hardware platform, Keystone provides
for the instantiation of a customized TEE environment
entirely from software, with additional security guaran-
tees and features available based on the hardware. Simi-
larly, based on the intended use case, the functionality
and security tradeoffs can be customized at software
build time. Once the custom Security Monitor is com-
plete, the measurement and source can be published
to allow the validation of attestation reports. This flex-
ibility extends after deployment, allowing for a new
Security Monitor to be deployed via a software update.
Any validation of future attestation reports originating
from an updated device will then need to trust the new
recorded Security Monitor measurement. We expect
that the device manufacturer would generally be the
one responsible for developing and updating the Secu-
rity Monitor, but this is not a requirement.

Keystone additionally permits each enclaved appli-
cation to run a private supervisor-mode component
to manage virtual memory, support syscalls, and so

54 IEEE Security & Privacy September/October 2020

HARDWARE-ASSISTED SECURITY

on without relying on the host OS. This can be used to
instantiate a similar split to TrustZone, where one secure
OS manages multiple applications, or can allow for mini-
mal enclaves with only a small shim in supervisor mode
to communicate between the application and host.

Benefits
With Keystone, we hope to enable significantly faster
TEE development and reuse. Keystone requires little
from the hardware: merely a standard RISC-V core, a
way to store device keys, and a secure bootloader. Due to
RISC-V’s privilege model and physical memory protec-
tion standard,14 the rest can be handled straightforwardly
in the software. This allows Keystone to be deployed on
a large number of platforms and easily tested on those
that do not support all the required hardware features.
However, Keystone is not constrained to these features
and can integrate easily with additional hardware for
platform-specific features. As an example, Keystone
currently supports several cache and physical adversary
defenses on one development board by leveraging a con-
figurable L2 cache controller. This lets Keystone have a
flexible threat model, where the specific defenses applied
can be tailored to the use case and hardware in question,
without changes to the core primitives or applications.

Future Development
Keystone is an open project and encourages external
contributions (https://keystone-enclave.org/). We
have already integrated early contributions by adding
build support for other hardware platforms and expect
to receive more as new RISC-V platforms become avail-
able. By keeping all of Keystone’s development open
source, we encourage other research groups to use it as
the basis for the development of security features and
TEE designs.

Evolving TEEs
As TEEs are incorporated into new secure system
designs, the requirements on those TEEs evolve. In the
following section, we outline a few areas in which TEE
design exploration is needed and that Keystone pro-
vides a good base to build on.

Distributing Trust
Current TEE trust and attestation systems rely on
the perpetual trust of the hardware manufacturer.
This occurs because, without external authority it is
impossible to differentiate between a device manufac-
tured in the past and a simulated device forged by the
manufacturer today. Ideally, this lifetime-of-the-device
trust could be separated from the initial trusted man-
ufacturing, allowing trust in the manufacturer to
be confined to manufacturing time. We see this as a

natural extension of the TEE objective to minimize
the required trust.

Accomplishing this requires a number of specific
features in any proposed attestation scheme. First, the
authenticity of a key presented by a device must be tied
to an entity other than the manufacturer. This can be as
simple as a third-party authority attesting to the time of
creation of a device’s key or as complex as multiple mutu-
ally distrusting parties each providing independent attes-
tations. Second, the keying of a device must not involve
the manufacturer observing any private device-specific
key material. Some hardware already accomplishes this
by having each device generate its own keys at provi-
sioning time and only ever releasing public key material.
This prevents any future compromise of the manufac-
turer from impersonating an older device but does not
prevent them from emulating new ones. There are many
possible approaches to distributing trust in a manufac-
tured device’s authenticity, each with its own challenges.
Increased engagement from stakeholders in the TEE eco-
system will allow us to explore various approaches along
with their tradeoffs. We aim to use Keystone as a proto-
typing framework to instantiate such designs.

Private TEE Infrastructure
A further extension of distributed TEE trust is the abil-
ity to use common hardware to build and maintain a
completely separate TEE design and trust chain. In such
a system, the hardware is provided without provisioned
keys or with a key reprovisioning method. An organiza-
tion can then develop and reprogram devices using their
own TEE software and keys. At this point, the hardware
manufacturer no longer has any role to play in the sys-
tem. Trust is established through an attestation system
designed and maintained by the organization deploying
the devices. The threat model and design of the TEE
software components is specialized to the needs of this
organization as well. An open TEE system allows for the
root of trust and trusted manufacturer to be changed as
needed. Instead of being tied to a specific manufacturer,
one can use commodity hardware and tie the attestation
and trust model to whatever root they wish.

Partitioning Approaches
An area of consistent debate is the balance of func-
tionality allocated to the host OS as compared to the
enclave. Any functionality (e.g., virtual memory and
I/O) managed by the host OS is inherently untrusted,
but reduces the size, complexity, and attack surface of
the enclave application. Numerous projects have used
Intel’s SGX to propose various tradeoffs up to a full OS
running in user space inside the enclave. Similarly, not
every application is optimally split into a single trusted
and untrusted component and may benefit from further

www.computer.org/security 55

partitioning into multiple trusted components. Open
TEEs allow for a wider range of experimental models
for how programs are partitioned and responsibility
is assigned. Notably, the inclusion of multiple privi-
lege modes within a single enclave and simple secure
enclave-to-enclave communications open up more
fine-grained partitioning than was previously possible.

A lthough opening up existing commercial TEE
systems will likely not occur, there are ample

opportunities for building new, open TEEs. Open hard-
ware (like RISC-V-based) platforms have already seen
numerous academic proposals and several open frame-
works targeting them. We believe that the closed and
manufacturer-oriented design of current commercial
TEEs will continue to slow advancement in this area.

TEEs offer an unusual opportunity for security engi-
neering: applications are willing to segment themselves
and take performance penalties for protection. We should
make sure that TEEs can evolve at the pace needed to
enable the growing interest in them. Open TEE frame-
works on open hardware are the right way to do that.

Acknowledgments
We thank our anonymous reviewers for their insightful
comments. This article is based, in part, on work sup-
ported by the National Science Foundation under grant
TWC-1518899, the Center for Long-Term Cyberse-
curity, and DARPA N66001-15-C-4066. Any opin-
ions, findings, and conclusions or recommendations
expressed in this article are those of the author(s) and
do not necessarily reflect the views of the National Sci-
ence Foundation. The research was partially funded by
RISE Lab sponsor Amazon Web Services, ADEPT Lab
industrial sponsors, and affiliates Intel, Hewlett-Packard,
Futurewei, NVIDIA, and SK Hynix. Any opinions, find-
ings, conclusions, or recommendations in this article are
solely those of the authors and do not necessarily reflect
the positions or the policies of the sponsors.

References
 1. “ARM security technology: Building a secure system

using TrustZone technology,” ARM Ltd., Cambridge,
White Paper,” 2013.

 2. F. McKeen et al., “Innovative instructions and software
model for isolated execution,” in Proc. 2nd Int. Workshop
Hardware and Architectural Support Security and Privacy,
2013, Art. no. 10. doi: 10.1145/2487726.2488368.

 3. David Kaplan, Jeremy Powell, and Tom Woller, “AMD
memory encryption,” AMD Inc., Santa Clara, CA,
2016. [Online]. Available: http://amd-dev.wpengine
.n etdna- cdn.co m /wo rdpress /m ed ia/2 0 1 3 / 1 2 /
AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

 4. D. L. Chandramohan Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz, “Architectural
support for copy and tamper resistant software,” in Proc.
9th Int. Conf. Architectural Support Programming Lan-
guages and Operating Systems, 2000, pp. 168–177. doi:
10.1145/378993.379237.

 5. G. Edward Suh, C. W. O’Donnell, I. Sachdev, and S.
Devadas, “Design and implementation of the AEGIS
single-chip secure processor using physical random func-
tions,” SIGARCH Comput. Archit. News, vol. 33, no. 2, pp.
25–36. 2005. doi: 10.1145/1080695.1069974.

 6. D. Champagne and R. B. Lee, “Scalable architectural
support for trusted software,” in Proc. 16th Int. Symp.
High-Performance Computer Architecture (HPCA-16 2010),
Jan. 2010, pp. 1–12. doi: 10.1109/HPCA.2010.5416657.

 7. R. Boivie, “SecureBlue++: CPU support for secure execu-
tion,” IBM, Armonk, NY, 2012.

 8. A Ferraiuolo, A Baumann, C Hawblitzel, and B
Parno, “Komodo: Using verification to disentangle
secure-enclave hardware from software,” in Proc. 26th
Symp. Operating Systems Principles, 2017, pp. 287–305.
doi: 10.1145/3132747.3132782.

 9. V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Mini-
mal hardware extensions for strong software isolation,” in
Proc. 25th USENIX Security Symposium (USENIX Secu-
rity 16), Austin, TX: USENIX Association, Aug. 2016,
pp. 857–874. doi: 10.5555/3241094.3241161.

 10. T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind,
and S. Devadas, “Mi6: Secure enclaves in a specula-
tive out-of-order processor,” in Proc. 52nd Annu. IEEE/
ACM Int. Symp. Microarchitecture, 2019, pp. 42–56. doi:
10.1145/3352460.3358310.

 11. S. Gueron, “Memory encryption for general-purpose pro-
cessors,” IEEE Security Privacy, vol. 14, no. 6, pp. 54–62,
Nov. 2016. doi: 10.1109/MSP.2016.124.

 12. D Lee, D Kohlbrenner, S Shinde, K Asanovic, and D
Song, “Keystone: An open framework for architect-
ing trusted execution environments,” in Proc. 15th
European Conf. Computer Systems, 2020, pp. 1–16. doi:
10.1145/3342195.3387532.

 13. J. P. Anderson, “Computer security technology planning
study,” James P. Anderson Co., Fort Washington, PA,
Tech. Rep., 1972. [Online]. Available: https://apps.dtic
.mil/docs/citations/AD0758206

 14. Krste Asanović and Andrew Waterman, “The RISC-V
instruction set manual Volume II: Privileged archi-
tecture,” RISC-V International, Switzerland, May
2017. [Online]. Available: https://content.riscv.org/
wp-content/uploads/2017/05/riscv-privileged-v1.10
.pdf

David Kohlbrenner is a postdoctoral scholar at the Uni-
versity of California (UC), Berkeley. His research
interests include the ways in which hardware design

56 IEEE Security & Privacy September/October 2020

HARDWARE-ASSISTED SECURITY

and implementation affects software security. Kohl-
brenner received his Ph.D. from UC San Diego. Con-
tact him at dkohlbre@berkeley.edu.

Shweta Shinde is a postdoctoral scholar at the Univer-
sity of California, Berkeley. Her research is broadly
at the intersection of trusted computing, system
security, program analysis, and formal verifica-
tion. Shweta received her Ph.D. from the National
University of Singapore. Contact her at shwetas@
berkeley.edu.

Dayeol Lee is a Ph.D. student in the Department of Elec-
trical Engineering and Computer Sciences at the Uni-
versity of California, Berkeley. His research interests
include hardware/system-level security. Contact him
at dayeol@berkeley.edu.

Krste Asanović is a professor in the Computer Sci-
ence Division of the Department of Electrical Engi-
neering and Computer Sciences at the University
of California (UC), Berkeley. His research inter-
ests include computer architecture, very large-scale
integration design, parallel programming, and OS
design. Asanovic received his Ph.D. in computer
science from UC Berkeley. Contact him at krste@
berkeley.edu.

Dawn Song is a professor in the Department of Electrical
Engineering and Computer Science at the University
of California (UC), Berkeley. Her research interests
include artificial intelligence and deep learning, secu-
rity, and privacy. Song obtained her Ph.D. from UC
Berkeley. She is a Fellow of the IEEE and ACM. Con-
tact her at dawnsong@berkeley.edu.

CALL FOR ARTICLES
IT Professional seeks original submissions on technology
solutions for the enterprise. Topics include

•	 emerging technologies,
•	 cloud computing,
•	 Web 2.0 and services,
•	 cybersecurity,
•	 mobile computing,
•	 green IT,
•	 RFID,

•	 social software,
•	 data management and mining,
•	 systems integration,
•	 communication networks,
•	 datacenter operations,
•	 IT asset management, and
•	 health information technology.

We welcome articles accompanied by web-based demos.
For more information, see our author guidelines at
www.computer.org/itpro/author.htm.

WWW.COMPUTER.ORG/ITPRO

Digital Object Identifier 10.1109/MSEC.2020.3015405

