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ABSTRACT
New hardware primitives such as Intel SGX secure a user-level pro-
cess in presence of an untrusted or compromised OS. Such “en-
claved execution” systems are vulnerable to several side-channels,
one of which is the page fault channel. In this paper, we show
that the page fault side-channel has sufficient channel capacity to
extract bits of encryption keys from commodity implementations
of cryptographic routines in OpenSSL and Libgcrypt— leaking
27% on average and up to 100% of the secret bits in many case-
studies. To mitigate this, we propose a software-only defense that
masks page fault patterns by determinising the program’s mem-
ory access behavior. We show that such a technique can be built
into a compiler, and implement it for a subset of C which is suffi-
cient to handle the cryptographic routines we study. This defense
when implemented generically can have significant overhead of up
to 4000×, but with help of developer-assisted compiler optimiza-
tions, the overhead reduces to at most 29.22% in our case studies.
Finally, we discuss scope for hardware-assisted defenses, and show
one solution that can reduce overheads to 6.77% with support from
hardware changes.

1. INTRODUCTION
Operating systems are designed to execute at higher privileges

than applications on commodity systems. Recently, this model of
assuming a trusted OS has come under question, with the rise of
vulnerabilities targeting privileged software [24]. Consequently,
new hardware primitives have emerged to safeguard applications
from untrusted OSes [36,37,47]. One such primitive is Intel SGX’s
enclaved execution which supports secure execution of sensitive
applications on an untrusted OS. The SGX hardware guarantees
that all the application memory is secured and the OS cannot ac-
cess the application content. During execution, applications rely
on the OS for memory management, scheduling and other system
services. Intel SGX holds the promise of affording a private virtual
address space for a trusted process that is immune to active probing
attacks from the hostile OS. However, side-channels such as the
page-fault channel have been recently discovered [51]. Since the
OS manages the virtual-to-physical page translation tables for the
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sensitive application, it can observe all page faults and the faulting
page addresses, which leaks information. These attacks show that
mere memory access control and encryption is not enough to de-
fend against the OS, which motivates a systematic study of defense
solutions to mitigate this channel.

In this paper, we first show that the channel capacity of the page-
fault channel is sufficient to extract secret key information in ex-
isting implementations of cryptographic routines (OpenSSL and
Libgcrypt). Cryptographic routines are vital to reducing the TCB
and enclaved applications are expected to critically rely on them
to establish secure channel with the I/O, filesystem and network
sub-systems [10, 27, 41]. To perform an attack, the adversarial OS
allocates a minimum number of physical pages to the sensitive en-
clave process, such that memory accesses spill out of the allocated
set as much as possible, incurring page faults. We call such attacks
as pigeonhole attacks1 because they force the victim process to spill
outside the allocated physical pages, thereby maximizing the chan-
nel capacity of the observed side-channel. They affect a long line
of systems such as Intel SGX [37], InkTag [28], PodArch [44], and
OverShadow [18] which protect application memory.

The page fault channel is much easier for the OS to exploit as
compared to other side-channels. For example, in case of cache
side-channel, the hardware resources such as size, number of data
entries, eviction algorithm and so on are often fixed. The adver-
sary has a limited control on these factors and the observations are
mainly local to small fragments of program logic. On the contrary,
in case of pigeonhole attacks, adversary is much stronger, adaptive,
and controls the underlying physical resource (the number of physi-
cal pages). Moreover, it can make far more granular clock measure-
ments (both global and local) by invoking and inducing a fault in
the enclave. To defend applications against this unaddressed threat,
we seek a security property that allows an application to execute
on any input data while being agnostic to changes in the number
of pages allocated. The property assures that the OS cannot glean
any sensitive information by observing page faults. We call this
property as page-fault obliviousness (or PF-obliviousness).

In this work, we propose a purely software-based defense against
pigeonhole attacks to achieve PF-obliviousness. We point out that
defenses against time and cache side-channels do not directly pre-
vent pigeonhole attacks, and achieving PF-obliviousness has been
an open problem [51]. Our goal is to guarantee that even if the OS
observes the page faults, it cannot distinguish the enclaved execu-
tion under any values for the secret input variables. Our propose
approach is called deterministic multiplexing, wherein the enclave
application exhibits the same page fault pattern under all values
possible for the secret input variables. Specifically, we modify the

1These attacks were also referred to as controlled-channel attacks
in previous work.



program to pro-actively access all its input-dependent data and code
pages in the same sequence irrespective of the input. In our empir-
ical case studies, the naive implementation of deterministic multi-
plexing results in an overhead of about 705× on an average and
maximum 4000×! Therefore, we propose several optimizations
techniques which exploit specific program structure and makes the
overhead statistically insignificant in 8 cases, while the worst-case
performance is 29.22%. All our defenses are implemented as an
extension to the LLVM compiler, presently handling a subset of
C/C++ sufficient to handle the cryptographic case studies. Finally,
we discuss alternative solutions for efficient defenses, and suggest
a new defense which requires hardware support, but yields an ac-
ceptable worst-case overhead of 6.67% for our case studies.
Contributions. We make the following contributions:
• Pigeonhole attacks on real cryptographic routines. We demon-

strate that the page-fault channel has sufficient capacity to
extract significant secret information in widely-used basic
cryptographic implementations (e.g., AES, EdDSA, RSA).
• Defense. We propose PF-obliviousness and design determin-

istic multiplexing approach that eliminates information leak-
age via page fault channel.
• Optimizations & System Evaluation. We apply our defense

to the vulnerable cryptographic utilities from Libgcrypt and
OpenSSL, and devise sound optimizations. In our experi-
ments, deterministic multiplexing amounts to an average of
705× overhead without optimization, and is reduced to an
acceptable average and worst case overhead of 29.22% after
optimization.

2. PIGEONHOLE ATTACKS
In a non-enclaved environment, the OS is responsible for manag-

ing the process memory. Specifically, when launching the process,
the OS creates the page tables and populates empty entries for vir-
tual addresses specified in the application binary. When a process
begins its execution, none of its virtual pages are mapped to the
physical memory. When the process tries to access a virtual ad-
dress, the CPU incurs a page fault. The CPU reports information
such as the faulting address, type of page access, and so on to the
OS on behalf of the faulting process, and the OS swaps in the con-
tent from the disk. Similarly, the OS deletes the virtual-to-physical
mappings when it reclaims the process physical memory as and
when requested or when necessary. Thus, a benign OS makes sure
that the process has sufficient memory for execution, typically, at
least 20 pages in Linux systems [13].

2.1 Benign Enclaved Execution
The aim of enclave-like systems is to safeguard all the sensi-

tive process (called as an enclave) memory during the execution.
These systems use memory encryption [18, 44] and / or memory
access controls [28, 37] to preserve the confidentiality of the sensi-
tive content. The process memory is protected such that the hard-
ware allows access in ring-3 only when a legitimate owner process
requests to access its content [18]. When the OS in ring-0 or any
other process in ring-3 tries to access the memory, the hardware
either encrypts the content on-demand or denies the access. This
guarantees that neither the OS nor other malicious processes can
access the physical memory of an enclave. In enclaved execution,
the OS memory management functions are unchanged. The onus
still lies with the OS to decide which process gets how much phys-
ical memory, and which pages should be loaded at which addresses
to maintain the process-OS semantics. The OS controls the page
table entries and is also notified on a page fault. This CPU de-
sign allows the OS to transparently do its management while the
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Figure 1: Problem Setting. Process executing on untrusted OS.

hardware preserves the confidentiality and integrity of the process
memory content. For example, if there are not many concurrent
processes executing, the OS may scale up the memory allocation to
a process. Later, the OS may decrease the process memory when it
becomes loaded with memory requests from other processes. Fur-
ther, the CPU reports all the interrupts (such as page fault, general
protection fault) directly to the OS. Figure 1 shows the scenario in
enclaved execution, wherein the untrusted OS can use 2 interfaces:
allocate and de-allocate to directly change the page ta-
ble for allocating or deallocating process pages respectively. Many
systems guarantee secure execution of processes in presence of un-
trusted OSes, either at the hardware or software level. Execution of
processes in such isolated environments is referred to as cloaked ex-
ecution [18], enclaved execution [37], shielded execution [10], and
so on depending on the underlying system. For simplicity, we refer
to all of them as enclaved execution in this paper. SGX-specific
details have been outlined in other works [7, 8].

2.2 Pigeonhole Attack via Page Faults
In enclaved execution, the OS sees all the virtual addresses where

the process faults 2. This forms the primary basis of the page
fault side-channel. Each page fault in the enclaved execution leaks
which specific page is the process accessing at a specific point in
execution time. Since the OS knows the internal structure of the
program such as the layout of the binary, mmap-ed pages, stack,
heap, library addresses and so on, the OS can profile the execution
of the program and observe the page fault pattern. In fact it can
invoke and execute the enclave application for a large number of
inputs in offline mode to record the corresponding page fault pat-
terns. At runtime, the OS can observe the page fault pattern for
the user input and map it to its pre-computed database, thus learn-
ing the sensitive input. The remaining question is, what degree of
control does the OS have on the channel capacity?

An adversarial OS that is actively misusing this side-channel al-
ways aims to maximize the page faults and extract information for
a given input. On the other hand, applications often follow tem-
poral and spatial locality of reference and thus do not incur many
page faults during benign execution. Thus, the information leaked
via the benign page faults from the enclave is not significant. How-
ever, note that the adversarial OS controls the process page tables
and decides which virtual pages are to be loaded in the physical
memory at a given point. To perpetrate the pigeonhole attack, the
OS allocates only three pages at most to the program at a particular
moment — the code page, the source address and the destination
address 3. Lets call this as a pigeonhole set. Thus, any subsequent
instructions that access any other page (either code or data) will fall

2In our model, the trusted CPU or hypervisor only reports the base
address of the faulting page while masking the offset within the
page (unlike in InkTag [28]).
3An x86 instruction accesses at most 3 address locations.



0x7F..E8CC: mov	Table1[idx],	rax	

idx < 1c idx >= 1c 

P1: 0x7F..5000	 P2: 0x7F..6000	

Table	0	 Table	1	

Figure 2: Attack via input dependent data page access in AES.
The data lookup to either P1 or P2 is decided by secret.

ec_mul{…} P1:	
0xA7310	

ec_mul(r, G): 

add_points{…} P2:	
0xA6CB0	

test_bit{…} P3:	
0x9EB30	

res	=	O	
nbits	=	|r|	
	
for	(i	=	nbits-1;	i>=0;	i--):	
		res	=	dup_point(res)	
	
		if	(test_bit(r[i])):	
				res	=	add_points(res,	G)	
	
return	res	

r[i]==1 

r[i]==0 

Figure 3: Attack via input dependent control page access in
EdDSA. The control to either P1 or P2 is dependent on secret.

out of the pigeonhole set resulting in a page fault 4. The faulting ad-
dress of this instruction reveals what the process is trying to access.
In most applications, a large fraction of memory accesses patterns
are defined by the input. To extract the information about this input,
the OS can pre-empt the process by inducing a page fault on nearly
every instruction. Our analysis shows that empirically, every 10th
code / data access crosses page boundaries on an average in stan-
dard Linux binaries 5. This implies that the OS can single step the
enclaved execution at the granularity of 10 instructions by forcing
a page fault and make observations about the virtual address access
patterns. Thus, by resorting to this extremity the OS achieves the
maximum leakage possible via the page fault channel.

2.3 Attack Examples
A pigeonhole attack can manifest in any application running in

an enclave. In this work, we limit our examples to cryptographic
implementations for two reasons. First, even a minimalistic enclave
will at least execute these routines for network handshake, ses-
sion establishment and so on. For example, SGX applications such
as one-time password generators, secure enterprise rights manage-
ment and secure video conferencing use an enclave for the TLS
connections and other cryptographic functions on sensitive data [27].
Second, the previous work does not study the leakage via page
faults in cryptographic routines since they are assumed to be al-
ready hardened against other side-channel attacks such as timing
and power consumption. On the contrary, we show that cache
hardening and memory encryption is not enough. This is because
caches are accessed by lower address bits while pages are accessed
by higher order bits. Only masking lower order bits does not nec-
essarily mask the page access order. Let us take a look at two rep-
resentative examples to demonstrate real pigeonhole attacks.
Input Dependent Data Page Access. We choose a real example
of AES from the Libgcrypt v1.6.3 compiled with gcc v4.8.2 on
Linux system. In this example, the adversary can learn information
equivalent to 25 bits of entropy about the input secret key. Note that
the best known purely cryptanalytic attack for AES leak informa-
tion equivalent to 2-3 bits about the key [12]. Any leakage beyond
that is a serious amount of leakage. A typical AES encryption rou-
tine involves multiple S-Box lookups. This step is used to map an

4Note that the process does not suffer denial of service, only its
progress is slowed down due to excessive page faults.
5We tested COREUTILS utilities in malicious runs under random
inputs.

input index to a non-linear value, followed by the MixColumn step.
In the Libgcrypt implementation of AES, the lookup tables are de-
signed to contain both S-box values as well as pre-computed val-
ues for MixColumns transform for optimization [2]. There are four
such tables (Table0 to Table3) which are used in table look-ups at
various rounds of encryption process. All the lookup operations in
the first round take in a byte of the secret input key, XOR it with
the plain text (which can be set to 0s) and emit a corresponding
value in the table. Each of these tables comprise of 256 entries and
are statically loaded based on the compiler-generated layout. In
our example, Table1 and Table3 cross page boundaries. Specifi-
cally, indexes below 0x1C are in first page (P1) while the indexes
from 0x1C to 0xFF are in second page (P2). Figure 2 shows
the snapshot of the virtual address space of AES, where Table1
is loaded. During an enclaved execution, the process will exhibit
page access profile depending on the input secret key and the plain
text. The adversary adaptively selects the plain text and observes
the page faults to learn the secret key. For example, lets say the
key is 0x1A3E0946 and the adversary choses the plain text to be
0x00000000. Then the resulting XOR is 0x1A3E0946, and the
page access profile will be [P1P2P1P2]. An adversarial OS ob-
serving these page faults knows if the enclave is accessing page P1

or P2. Thus, for each access, this information reduces the OSes
uncertainty from 256 choices to either 28 or 228 choices. In case
of AES, these two portions of the table are accessed 4 times each
in every round for a 128 / 196 / 256-bit key. The OS can adaptively
execute the process for different known plain texts and observe the
access page access profile across multiple runs. This amounts to an
information theoretic leakage of 25 bits in just the first of the total
10 / 12 / 14 rounds of AES 6.
Input Dependent Code Page Access. As a second example, con-
sider EdDSA which is an elliptic curve using with twisted Edward
curve and is used in GnuPG and SSL. In EdDSA signing algo-
rithm [11], the main ingredient is a randomly chosen scalar value
r which forms the session key. The value of r is private and if
leaked it can be used to forge a signature for any arbitrary mes-
sage. We show how the adversary can use pigeonhole attacks to
completely leak the private value r. Figure 3 shows a code snippet
and the page layout for the scalar point multiplication routine of
Libgcrypt implementation compiled with gcc v4.8.2. It takes in
an integer scalar (r in this case), a point (G), and sets the result to
the resulting point. The multiplication is implemented by repeated
addition — for each bit in the scalar, the routine checks the value
and decides if it needs to perform an addition or not. The main
routine (ec_mul), the sub-routines for duplication (dup_point)
and testing the bit (test_bit) are located in three different pages
denoted as P1, P2, P3 respectively. Interestingly, the addition sub-
routine (add_points) is located in pages P1 and P2. A page
profile satisfying a regular expression [P1 P2 P1 P3 P1 (P1P2)∗]
implies a bit value 1 and [P1 P2 P1 P3 P1] implies a 0 bit value.
Essentially, the OS can learn the exact value of the random integer
scalar r picked by the process. This amounts to a total leakage of
the secret, and in fact enables the OS to forge signatures on behalf
of the enclave.

We have experimentally confirmed both of the above attacks.
We demonstrate more attacks on cryptographic implementations of
Libgcrypt and OpenSSL in Section 6.1. These attacks may apply
to cloud server platforms [10, 15, 21, 22, 41, 49, 54, 55].

6AES first round uses the first 128 bits of a 128 / 196 / 256-
bit key. Initial uncertainty of OS = 2128. With pigeonhole at-
tack, the OS knows for the 64 bits if the index is less than 0x1c.
So, final uncertainty = 264 × 288. Information leakage (in bits)
= log2(2128 − (264 × 288)) = 25.54 ~ 25 bits [45].



3. OVERVIEW
The malicious OS can use pigeonhole attacks to observe input-

dependent memory accesses and learn information about input pro-
gram secrets. We now discuss our approach to prevent this leakage.

3.1 Security Definitions & Assumptions
Lets represent an enclave program P that computes on inputs I

to produce output O as (P, I) 7→ O, such that both I and O are
secret and are encrypted in RAM. In case of enclaved execution,
the adversary can observe the sequence of page faults. We term
this knowledge of the adversary as the page access profile. Note
that each observed profile is specific to an input to the program,
and is defined as:

Definition (Page Access Profile.) For a given program P and a
single input I , the page access profile

−→
V P I is a vector of tuples

〈V Pi〉, where V Pi is the virtual page number of the ith page fault
observed by the OS.

To model the security, we compare the execution of a program on
a real enclaved system with its execution on an “ideal” system. The
ideal system is one which has infinite private memory and therefore
the program execution doesn’t raise faults. On the other hand, the
real system has limited memory and the enclave will incur page
faults during its execution. Specifically, we define these two models
as follows:

• ∞-memory Enclave Model (M∞−model). The enclaved ex-
ecution of program on a system with an unbounded physical
memory such that the page access profile is ∅.
• Bounded-memory Enclave Model (MB−model). Enclaved

Execution of program such that for any instruction in the pro-
gram, the enclave has the least number of pages required for
executing that instructions 7.

Definition (Page Access Profile Distinguishability) Given a pro-
gram (P, I) → O, we say P exhibits page access profile dis-
tinguishability if there exists an efficient adversary A such that
∃ I0, I1 ∈ I and b ∈ {0, 1}, for which the advantage:
Adv(A) = |Pr[Exp(

−→
V P Ib=0) = 1] − Pr[Exp(

−→
V P Ib=1) = 1]|

is non-negligible.

If a probabilistic polynomial time-bounded adversary can dis-
tinguish the execution of the program for two different inputs by
purely observing the page access profile, then the program exhibits
page access profile distinguishability. A safe program exhibits no
leakage via the page fault channels; we define page-fault oblivious-
ness as a security property of a program as follows:

Definition (PF-obliviousness) Given a program P w.r.t. inputs I ,
the PF-obliviousness states that if there exists an efficient adver-
sary A which can distinguish (

−→
V P I0 ,

−→
V P I1) for ∃ I0, I1 ∈ ~I in

the MB−model, then there exists an adversary A′ which can dis-
tinguish I0, I1 in the M∞−model.

Our definition is a relative guarantee — it states that any in-
formation that the adversary learns by observing the execution of
program on a bounded private memory, can always be learned by
observing the execution even on an unbounded memory (for e.g.,
the total runtime of the program). Such information leaked can be
gleaned even without the page fault channel. Our defense does not
7In our case it is at most three pages, which is the maximum num-
ber of pages required to execute any Intel x86 instruction.

provide any absolute guarantees against all possible side- channels.
If there are additional side channels in a PF-oblivious program, they
can be eliminated with orthogonal defenses.
Scope and Assumptions. Our work considers a software-based
adversary running at ring-0; all hardware is assumed to be trusted.
Further, the following challenges are beyond the goals of this work:
• A1. Our attacks and defenses are independent of other side-

channels such as time, power consumption, cache latencies,
and minor execution time differences between two different
memory access instructions that raise no faults. If such a dif-
ference is discernible, then we can show that they provides a
source of advantage even in an execution with no page faults
(∞-model). Application developers can deploy orthogonal
defenses to prevent against these side-channels [53]. Our de-
fenses do not prevent information leakage via untrusted I/O,
system-call, and filesystem channels [17].
• A2. Once a page has been allocated to the enclave, the OS

can take it away only on a memory fault. We do not consider
the case where the OS removes enclave pages via a timer-
based pre-emption, since the adversary’s clock granularity
is much coarser in this case and likely yields a negligible
advantage.

3.2 Problem & Approach Overview
Problem Statement. Given a program P and set of secret inputs
I , we seek a program transformation T : P 7→ P ′ such that the
transformed program P ′ satisfies PF-obliviousness with respect to
all possible values of I .

Consider a program executing on sensitive input. The execution
path of such a program can be defined by the sequence of true and
false branches taken at the conditional statements encountered dur-
ing the execution. Each set of straight-line instructions executed
and corresponding data accessed between the branching condition
statements can be viewed as an execution block. Let us assume that
each execution block has the same number of memory accesses and
by assumption A1 each memory access takes approximately same
amount of time. Then, all such paths of a program can be repre-
sented using a tree, say the execution tree such that each node in
the tree is an execution block connected by branch edges. For ex-
ample, the function foo() in Figure 4 (a) has 3 execution paths in
the execution tree shown in Figure 4 (b). Each of the paths a, b, c
can be executed by running the program on the inputs (x = 4, y =
2), (x = 8, y = 9) and (x = 6, y = 5) respectively.

Page access profile is inherently input dependent, so anyone who
observes the page access profile can extract bits of information
about the input. However, if the page access profile remains the
same irrespective of the input, then the leakage via page fault chan-
nel will drop to zero [35]. We call this transformation strategy as
determinising the page access profile. We adopt this strategy and
enforce a deterministic page access profile for possible paths in the
program execution. The enclaved execution always sequentially
accesses all the code and data pages that can be used at a particular
memory-bound instruction for each execution. In our example, Fig-
ure 4, we will access both BB3 as well as BB4 irrespective of the
branching condition. Similarly, we also apply it at level 4, so that
the complete program path is BB1, BB2, BB3, BB4, BB5′, BB6′,
BB5, BB6 for all inputs. Thus, deterministic execution makes one
real access and several fake accesses to determinise the page access
profile. It is easy to see that under any input the execution exhibits
the same page access profile.

The challenge that remains is: how to execute such fake accesses
while still doing the actual intended computations. We present a
simple mechanism to achieve this. First we use the program’s exe-



1 foo (int x, int y)
2 {
3 z = 2 * y
4 if (z != x)
5 {
6 if (z < x + 10)
7 path_c()
8 else
9 path_b()

10 }
11 else
12 path_a()
13 }

z = 2*y

False True

TrueFalse

BB3

BB1

BB5

z != x

path_a z < x+10

path_b path_c

BB2

BB4

BB6

z = 2*y

False True

TrueFalse

BB3

BB1

BB5

z != x

path_a z < x+10

dummy_pad path_b path_c

BB2

BB4

BB6BB6'BB5'

dummy_pad

Figure 4: (a) Code snippet for example function foo where x and y are secret. (b) Unbalanced execution tree. (c) Corresponding
balanced execution tree.
cution tree to identify what are all the code and data pages that are
used at each level of the tree for all possible inputs (BB3, BB4
at level 3 in our example). This gives us the set of pages for
replicated-access. Next, we use a multiplexing mechanism to load-
and-execute the correct execution block. To achieve this, we break
each code block execution into a fetch step and an execute step. In
the fetch step, all the execution blocks at the same level in the ex-
ecution tree are fetched from memory sequentially. In the execute
step the multiplexer will select the real block and execute it as-is.
In our example, for (x = 4, y = 2), the multiplexer will fetch all
blocks but execute only BB3 at level 3, and for (x = 8, y = 9) or (x
= 6, y = 5), the multiplexer will execute BB4.

4. DESIGN
There can be several ways for determinising the page access pro-

file; selecting the best transformation is an optimization problem.
We discuss one such transformation which can be applied generi-
cally and then present the program-specific transformations which
incur lower costs (Section 5).

4.1 Setup
It is simple to adapt the standard notion of basic blocks to our

notion of execution blocks. In our example code snippet in Fig-
ure 4 (a), we have 6 such execution blocks BB1 to BB6. In case of
BB1, the code page C will comprise of virtual page address of the
statement z = 2 * y, and data pages D will have virtual page
address of variables z and y.

Note that the execution tree in Figure 4 (b) is unbalanced, i.e.,
the depth of the tree is not constant for all possible paths in the
program. This imbalance in itself leaks information about the in-
put to an adversary even without pigeonhole attacks simply by ob-
serving the function start-to-end time. For example, the first path
(path_a) in Figure 4 (b) is of depth 2 and is only taken when value
of z equals value of x. If the adversary can try all possible values
of secret, then the tree depth becomes an oracle to check if the
guess is correct. To capture the information leaked strictly via the
page fault channel, we limit our scope to balanced execution tree.
If the tree is unbalanced, then the input space is partitioned into
sets which are distinguishable in the original program in the ∞-
model. Since we limit our scope to achieving indistinguishability
relative to ∞-model, we safely assume a balanced execution tree
as shown in Figure 4 (c) [38]. Techniques such as loop unrolling,
block size balancing with memory access and NOP padding can be
used to balance the tree depth and block sizes [19]. In our experi-
ence, cryptographic routines which are hardened against timing and
cache side-channels generally exhibit balanced execution trees. For
the set of programs in our study, if necessary, we perform a prepa-
ration step manually to balance the execution tree explicitly.

Even after the execution tree is balanced, the pigeonholing adver-

Table[idx]	

Data	

MUX	

Selector	

P1	

P2	

	
Table	1	

	

Data	Staging	Area	

	
Table	1	

	

Figure 5: Deterministic Multiplexing for data access. The mul-
tiplexer accesses the correct offset in the staging area.

sary knows the sequence of the execution blocks that were executed
for a given input only by observing page faults. For example, lets
assume that the execution blocks BB5 and BB6 are in two differ-
ent pages P1 and P2 respectively. Then the result of the branching
condition z < x+10 will either cause a page fault for P1 or P2, re-
vealing bit of information about the sensitive input x and y. Given
a balanced execution tree, we design a transformation function to
make the page access profile independent of the input [35].

4.2 Deterministic Multiplexing
We now discuss a concrete design of our transformation namely

deterministic multiplexing and demonstrate how it can be supported
to transform legacy C / C++ applications in the current compiler in-
frastructure.
Basic Multiplexing. In the fetch phase, we copy the code blocks
at the same level of the execution tree to a temporary page — the
code staging area (SAcode). All data that may be used by each of
these sensitive code blocks is copied to a separate temporary page
— the data staging area (SAdata). Then in the execution phase, we
use an access multiplexer which selects the correct code and data
blocks and executes it (by jumping to it). At the end of the sen-
sitive execution, the content from data staging area is then pushed
back to the actual addresses. If the execution changes any data in
the staging area, the new values are updated. The rest of the val-
ues are just copied back unchanged. Note that all these operations
are done in a sequence in the staging area (one code page). Thus
this execution is atomic — no page faults can occur between them.
From an adversarial viewpoint, the execution is performed within
the boundary of single code and single data page. So all that the
adversary can see is the same sequence of page faults for any input.
Thus our multiplexed fetch and execute mechanism ensures that the
OS cannot determine which code and data block was actually used
within the staging area.
Example. For our AES case, we apply deterministic multiplexing
and copy the data table T3 to staging area (See Figure 5). Each
data access now incurs 2 data page copies and a code page copy
followed by multiplexed accesses. Similarly for EdDSA, we can
multiplex the called functions into SAcode (See Figure 6). This
asserts that the OS cannot differentiate whether the true or the false
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Figure 6: Deterministic Multiplexing for code page access. The
multiplexer executes the correct function in the staging area.
branch was executed, by looking at the page access profile. Thus, in
both the cases the OS can observe the fetch and execute operations
only at the page granularity. It cannot determine which of the fetch
or execution operations is real and which is replicated.
Compacted Multiplexing. In the multiplexing mechanism, it is
important that both SAcode and SAdata must fit in a single page
each to prevent information leakage. For ensuring this, we specifi-
cally pick a block size such that at any given level in the execution
tree, all the blocks and the corresponding data always fit in a single
page. However, there are cases where the execution tree is deep and
has large number of blocks (total size of more than 4096 bytes) at a
certain level. This results in a multi-page staging area. To address
this, we use a compaction scheme to fit the staging area in a single
page. Specifically, in the fetch phase we create a dummy (not real)
block address in the staging area. The blocks which are not going
to be executed are saved at this dummy location during the fetch
step. Each new block from the execution tree overwrites (overlap)
the same location. Only the real block (which will be executed) is
copied in a non-overlapping address in the page. We term this as
a smart copy because each copy operation writes to either dummy
or real page-offset in the staging area. The adversary OS does not
see the offset of the faulting address, and hence cannot distinguish
a dummy vs. a real copy. Thus the staging area always fits in a
single page. The semantics of the execute phase are unchanged.

4.3 Compiler-enforced Transformations
We build our design into the compiler tool chain which works on

a subset of C / C++ programs. Given a program, the programmer
manually annotates the source code to demarcate the secret input to
the program and specifies the size of input with respect to which the
transformation should guarantee PF-obliviousness. Specifically, he
manually adds compiler directive begin_pf_sensitive and
end_pf_sensitive to mark the start and end of sensitive code
and data. For example, the developer can mark the encryption rou-
tine, decryption routine, key derivation, key, nonce, and so on as
secret. Our tool comprises of analysis and transformation steps to
enforce deterministic multiplexing which are discussed next.
Identifying Sensitive Code and Data. In the first step, our com-
piler front-end parses the source code and identifies the program-
mer added directives. It then performs a static analysis which tran-
sitively marks all the instructions and variables within the lexi-
cal scope of programmer-marked sensitive code as high. Non-
sensitive instructions and variables are marked as low. At the end
of the phase, each instruction and variable in the code has a sensi-
tivity tag (high or low).
Determinising the Page-layout. Next, our tool performs an anal-
ysis to decide the new virtual address layout for the sensitive data
and code (marked as high) for placing them in the staging area.
The initial step is to identify the existing execution tree of the sen-
sitive code. To achieve this, we create a super-CFG wherein each
function call is substituted with the body of the function and all the
bounded loops are unrolled. This creates an execution tree such
that all the sensitive execution blocks are identified. We seek a

mapping Γ : B 7→ L such that all the execution blocks at the same
level in the execution tree are relocated to the same virtual page
address. There are multiple possible Γ mappings which yield ac-
ceptable layouts, but our goal is to select the one where the code
and data staging areas always fit in a single page. We first try to use
the basic multiplexing for arranging the blocks if the total size of
all the blocks at a level is less than 4096 bytes. If the size of the re-
quired staging area exceeds one page, then we resort to compacted
multiplexing (See Section 4.2).
Instruction Rewriting. The last step of transformation comprises
of: (a) Adding logic for multiplexing (b) Adding prologue-epilogue
before and after the multiplexing to move the code / data to and
from staging area. Next, we rewrite the instructions to introduce
replicated accesses to data pages, and instrument each execution
block with a call to the code multiplexing logic as described in
Section 4.2. Finally, we add prologue and epilogue before and after
each execution block at each CFG level.
Example. In case of EdDSA, we manually add compiler pragmas
to mark the user key variable and the signing routine as sensitive.
Our analysis phase identifies 31 functions, 701 execution blocks,
178 variables as sensitive. It also collects information about the
call graph, function CFG and access type (read or write) of the
variables. After the analysis, our tool calculates (a) the staging
area to be created in first function ec_mul just before the first
access to the key (b) layout of the data staging area such that all the
variables fit in one page (c) the alignment of the execution block
in the staging area, (d) the new addresses of the sensitive variables
used in these execution block, and (e) instructions which are to be
updated for accessing the staging area. Finally, we add code for
preparing the staging area and instrument the code instructions to
use the data staging area values.
Security Invariant. The above compiler transformation ensures
that for the output program, all the execution blocks at the same
level in the execution tree are mapped to same ordered list of virtual
address locations. Thus for all the inputs, the program exhibits
the same page access profile hence satisfying our PF-obliviousness
property.

5. DEVELOPER-AIDED OPTIMIZATIONS
Apart from the compiler enforced transformation, we have man-

ually confirmed other strategies to make programs PF-oblivious.
We discuss these strategies which allow developer-aided optimiza-
tions. In the future, our compiler can be extended to search and
apply these optimization strategies automatically.

5.1 Exploiting Data Locality
The main reason that input-dependent data accesses leak infor-

mation in pigeonhole attacks is that the data being accessed is split
across multiple pages. In all such cases, the deterministic multi-
plexing repetitively copies data to and fro between the staging area
and the actual data locations. There are two key observations spe-
cific to these cases.
O1: Eliminating copy operations for read-only data. We ob-
serve that most of the table lookup operations are on pre-computed
data and the code does not modify the table entries during the entire
execution. Since these sensitive data blocks are used only in read
operations, we can fetch them into SAdata and discard them after
the code block executes. This saves a copy-back operation per code
block. Moreover, if the next code block in the execution tree uses
the same data blocks which already exist in SAdata, then we need
not copy them to SAdata. This save all the copy operations after
the data is fetched into the SAdata for the first time. In case of
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Figure 7: (a) Simplified page access profile for powm (Window size = 1) where A0, A1, A2, A3 denote transitions between mul_mod(),
powm(), set_cond() and karatsuba_release() respectively (b) Call graph before enforcing deterministic multiplexing. (c) Alignment
after optimization (O4) where dotted and shaded functions are moved to separate code staging pages.
Algorithm 1 Libgcrypt modular exponentiation (powm).
INPUT: Three integers g, d and p where d1...dn is the binary representation of d.
OUTPUT: a ≡ gd (mod p).

procedure POWM (g, d, p) . P1
w ← GET_WINDOW_SIZE(d), g0 ← 1, g1 ← g, g2 ← g2

for i← 1 to 2w−1 − 1 do . Precomputation
g2i+1 ← g2i−1 · g2 mul_mod p

end for
a← 1, j ← 0
while d 6= 0 do . Outer loop

j ← j+ COUNT_LEADING_ZEROS(d)
d← SHIFT_LEFT(d, j)
for i← 1 to j + w do . Inner Loop

a← a · a mul_mod p . P2
end for
t← d1...dw ;
j ← COUNT_TRAILING_ZEROS(t)
u← SHIFT_RIGHT(t, j)
gu ← FETCH_POWER(set_cond(u)) . P3
a← a · gu mul_mod p . P2
d← SHIFT_LEFT(d, w)

end while
end procedure

AES, we require only two operation to copy Table1 from P1 and
P2 to SAdata. We can apply the same strategy to Table3, so that
the entire execution needs only four copy operations.
O2: Page Realignment. All the data blocks which are spread
across page boundaries (specifically, S-Boxes) can be grouped to-
gether and realigned at the start of the page. This ensures that the
set of sensitive data pages is minimum for the entire execution.
In the context of AES example, both Table1 and Table3 cross
the page boundary and use 3 pages. They can be aligned to page
boundary and fit in 2 pages. Thus for deterministic multiplexing,
the patch will incur only two copy operations in total.

Note that the above strategies are safe and respect the security
invariant (Section 4.3) because all the eliminations are independent
of the input and thus the reduction in the copy operations affects all
the inputs uniformly.

5.2 Exploiting Code Locality
In case of input-dependent control transfers, automatically deter-

minising the control flow results in a high number of multiplexing
operations. To address this short-coming we propose a set of strate-
gies specific to the type of pigeonhole attacks, which reduces the
overheads to an acceptable range. We take the example of powm
and demonstrate our strategies.

Algorithm 1 shows the code structure and data access pattern
for the powm example. In the Libgcrypt implementation, the actual
function body (powm), the multiplication function (mul_mod) and
the table lookup function (set_cond) are located in three sepa-
rate pages say P1, P2, P3 respectively. Hence, the leakage from
powm is due to the different fault patterns generated from calls to
mul_mod and set_cond functions. Figure 7 (a) shows the page
fault pattern for powm with respect to these functions and Figure 7

(b) shows the function arrangement for powm. Let us consider the
implementations of deterministic multiplexing in Section 4.3 that
make calls to both these functions indistinguishable. For this, we
generate the call graphs of both functions which identifies the set
of sensitive functions are to be masked. For each call to any of
these sensitive function, we perform a multiplexing operation. It
iterates over the set of these sensitive functions in a deterministic
manner and copies all the blocks to SAcode. The multiplexer then
selects the correct block and executes it. In case of powm, we move
powm, mul_mod and set_cond to the staging area. This imple-
mentation of Section 4.3 incurs an overhead of 4000×, which is
prohibitive. We discuss our strategies in the context of this exam-
ple to describe the reasoning for the optimization.
O3A: Level Merging. The dominating factor in the deterministic
multiplexing is the number of copy and multiplexing operations at
each level in the execution tree. We observe that by the virtue of
code locality, code blocks across multiple levels can be merged to-
gether in a single level. Specifically, we place the code blocks such
that the caller and callee function are contained within a page. For
example, consider 3 code blocks a, b, c located in three separate
pages. The call graph is such that c is called by both a and b. If
total size of a, b, c put together is less than a page (4096 bytes),
then we can re-arrange the code such that all three of them fit in a
single page. In terms of the execution tree, it means that we fold
the sub-tree to a single code block.
O3B: Level Merging via Cloning. The above strategy will not
work in cases where the code blocks in a sub-tree cannot fit in
a single page. To address this, we use code replication i.e., we
make copies of shared code block in multiple pages. In our exam-
ple, if blocks a, b, c cannot fit into a single page, we rearrange
and replicate the block c in both P2 and P3. After replication, a
control-flow to c from neither a nor b will incur a page fault. For
powm, we split the mul_mod into 2 pages and replicate the code
for set_cond. Thus, call to from powm to set_cond can be
resolved to either of the pages. It is easy to see that since secu-
rity guarantee of the compiler-transformed code holds true for the
un-optimized program execution tree, it trivially holds true for the
reduced trees in the above two cases because O3A-B are replicating
or merging the page access uniformly for all the inputs.
O4: MUX Elimination. Our next optimization is based on the
insight to eliminate the cost of the multiplexing operation itself by
rearranging the code blocks. To achieve this, we place the code
blocks in the virtual pages to form an execution tree such that all
the transitions from one level to the other exhibit the same page
fault. This eliminates the multiplexing step altogether. In the above
example of blocks a, b and c, we place a and b into one page and
c into another. Thus, the control-flow from both a and b to c will
page fault in both the cases or none at all. We can chain successive
transitions for multiple levels in the tree, such that all the blocks in



Table 1: Summary of cryptographic implementations susceptible to pigeonhole attacks. ∗ denotes that the leakage depends on the
input. [a : b] denotes the split of S-Box where a and b is percentage of table content across two different pages.

Library Algo Secret
Entity

Vulnerable
Routine

Vulnerable
Portion (gcc)

Vulnerable
Portion (llvm) Input Bits Leakage

(gcc) % Leakage
(llvm) %

Libgcrypt
(v1.6.3)

AES
Symmetric key

Encryption 2 T-Boxes [11:89] 2 T-Boxes [50:50] 128, 192,
256 25 14.01 8 4.51

CAST5 Key Generation 1 S-Box [38:62] 1 S-Box [48:52] 128 3 2.34 2 1.56
SEED 1 SS-Box [88:12] 1 SS-Box [27:73] 128 *6 4.69 *4 3.13
Stribog Password

used in
PBKDF2

Key Derivation
4 S-Boxes [51:49] 4 S-Boxes [51:49] 512 32 6.25 32 6.25

Tiger 2 S-Boxes [53:47] 2 S-Boxes [58:42] 512 4 0.78 4 0.78
Whrilpool 4 S-Boxes [45:55] 4 S-Boxes [52:48] 512 32 6.25 32 6.25

EdDSA
Session key

(hence
Private key)

Signing ec_mul ec_mul 512 512 100 512 100

DSA Private key Key generation

powm powm

256 *160 62.50 *160 62.50
Elgamal

Modular
exponentiation

400 *238 59.50 *238 59.50

RSA

Private key
mod (p-1) 2048 *1245 60.79 *1245 60.79

Private key
mod (q-1) 2048 *1247 60.89 *1247 60.89

OpenSSL
(v1.0.2)

CAST5 Symmetric key Key generation 1 S-Box [55:45] 1 S-Box [84:16] 128 2 1.56 *6 4.69
SEED 1 SS-Box [47:53] 1 SS-Box [67:33] 128 16 12.50 *6 4.69

Average 28.02 25.64

1 if (c) {
2 result = result*2;
3 }

(a)

=⇒

1 staging_area[0] =
result;

2 staging_area[1] =
result*2;

3 result = staging_area[c
];

(b)
Figure 8: Example for O5: Control-to-Data Dependency
Transformation.
next level are always placed in a different pages. Figure 7 (c) shows
the arrangement of functions in the code staging area such that the
functions are grouped together in the same page. We apply this to
the execution sub-tree of mul_mod function in powm.

5.3 Peephole Optimizations
We apply a local peephole optimization to convert the control-

dependent code to data-dependency which eliminates the need for
code multiplexing.
O5: Control-to-Data Dependency Transformation. Masking data
page accesses is easier and hence we can convert the input depen-
dent code accesses to data accesses. For example, the if-condition
on value of c in Figure 8 (a) can be rewritten as Figure 8 (b).
Specifically, we perform an if-conversion such that the code is al-
ways executed and the condition is used to decide whether to retain
the results or discard them [20]. In the case of EdDSA, we first
fetch the value of res into SAdata (Refer to Figure 3 for code
details). We execute add_points unconditionally and we use
test_bit as a selector to decide if the value in SAdata is to be
used. In the case where test_bit returns true, the actual res in
SAdata is used in the operation and is updated, else it is discarded.
The page fault pattern will be deterministic since add_points
will be executed on all iterations of the loop and the operand of
the function is always from SAdata. This optimization is applied
before the compiler transformation, hence its security follows from
the basic security invariant outlined in Section 4.3.

All our strategies O1-O5 are supported by our compiler aug-
mentation with programmer directives. Note that, our optimization
strategies are sound — the compiler still asserts that the transfor-
mation preserves the PF-obliviousness of the program. We discuss
the empirical effectiveness of these strategies in Section 6.4.

6. EVALUATION
Evaluation Goals. We aim to evaluate the effectiveness of our
proposed solutions for following main goals:

• Does our defense apply to all of our case studies?
• What are the performance trade-offs of our defense?
• How much performance improvements do developer-assisted

transformation offer?

Platform. SGX hardware is not yet fully rolled out and is not pub-
licly available for experimentation. As a recourse, we conduct all
our experiments on PODARCH [44]; a system similar to previous
hypervisor solutions [18] and conceptually similar to SGX. Our
machine is a Dell Latitude 6430u host, configured with Intel(R)
Core(TM) i7-3687U 2.10GHz CPU, 8GB RAM. We configure PO-
DARCH with one CPU, 2GB RAM and 64-bit Linux 3.2.53 Kernel
on Debian Jessie for all the experiments. We use LLVM v3.4 with
the default optimization flags for compiling our vanilla and patched
case studies. All the results are averaged over five runs.

6.1 Case Studies
Selection Criteria. Our defense techniques can be applied to an
application if it satisfies the conditions of balanced-execution tree.
We checked the programs FreeType, Hunspell, and libjpeg dis-
cussed in [51] but they exhibit unbalanced execution tree. Trans-
forming these programs to exhibit balanced execution tree causes
an unacceptable performance loss, even without our defense [48].
Hence, we limit our evaluation to cryptographic implementations.

We present our results from the study of a general purpose cryp-
tographic library Libgcrypt v1.6.3 which is used in GnuPG and a
SSL implementation library OpenSSL v1.0.2 [2,3,5]. Table 1 sum-
marizes the results of our study. Interested readers can refer to the
extended version of the paper for the experimental details of each
case study attack [43]. We analyzed the programs compiled with
the two most-used compiler toolchains: gcc v4.8.2 and LLVM
v3.4. For both the compilers, we statically compiled all our pro-
grams with the default optimization and security flags for compila-
tion. Of the 24 routines we analyze in total from both the libraries,
10 routines are vulnerable to pigeonhole attacks on both the com-
pilers. Since our emphasis is not on the attacks, we highlight only
the important findings below.



Table 2: Performance Summary. Columns 3, 5, 12 denotes the number of page faults incurred at runtime. Columns 10 and 14
represent the total percentage overhead. > symbol denotes the program did not complete within 10 hours after which we terminated
it. A negative overhead means patched code executes faster than the baseline. Tc and Te denote the time spent in preparing the
staging area and actual execution respectively.

Library Cases
Vanilla Unoptimized

Deterministic Multiplexing
Optimized

Deterministic Multiplexing

PF T (ms) PF Tc (ms) Te (ms) T (ms) Tc / T (%) Ovh (%) Opt PF T (ms) Ovh (%)

Libgcrypt
(v1.6.3)

AES 4 - 5 4.711 4 7.357 4.013 11.370 64.70 141.35 O1,O2 4 4.566 -3.08
CAST5 2 3.435 2 8.050 2.578 10.629 75.74 209.47 O1,O2 1 3.086 -10.15
EdDSA 0 10498.674 0

— >10 hrs —
>300000 O5 0 13566.122 29.22

powm 0 5318.501 0 >400000 O3 0 399614.244 7413.66
O4 0 5513.712 3.67

SEED 2 1.377 2 4.559 1.057 5.615 81.18 307.79 O1, O2 1 1.311 -4.80
Stribog 5 27.397 5 329.743 10.836 340.579 96.82 1143.13 O1, O2 4 28.563 4.26
Tiger 3 2.020 3 64.482 0.546 65.029 99.16 3119.69 O1, O2 2 1.840 -8.89

Whirlpool 5 27.052 5 141.829 10.174 151.490 93.28 459.99 O1, O2 4 23.744 -12.23
OpenSSL
(v1.0.2)

CAST5 2 11.249 2 17.083 8.295 25.378 67.31 125.60 O1, O2 1 10.623 -3.41
SEED 2 3.684 2 8.998 3.737 12.734 70.66 245.69 O1, O2 1 3.558 -5.57

Average Performance Overhead 70575.27 -1.10

• No Leakage. In Libgcrypt implementations of Blowfish,
Camellia, DES, 3DES, IDEA, RC5, Serpent, Twofish, ECDSA,
and SHA512, all the input-dependent code and data memory
accesses are confined within a page for the sensitive portions.
Similarly AES, Blowfish, Camellia, DES, 3DES, IDEA, RC5,
Serpent, Twofish, DSA, RSA, and SHA512 in OpenSSL do
not exhibit leakage via page fault side channel.
• Leakage via input dependent code page access. In Libgcrypt,

EdDSA and powm exhibit input dependent code access across
pages and are vulnerable to pigeonhole attacks. The powm
function is used in ElGamal, DSA and RSA which leaks bits
of information about the secret exponents.
• Leakage via input dependent data page access. In case of

AES, CAST5, SEED, Stribog, Tiger and Whirlpool imple-
mentations in Libgcrypt, at least one of the S-Boxes crosses
page boundary and leaks information about the secret in-
puts. Similarly, implementations of CAST5 and SEED in
OpenSSL are also vulnerable.

6.2 Application to Case Studies
We transform the 8 Libgcrypt and 2 OpenSSL vulnerable imple-

mentations of our case studies in our evaluation.
Compiler Toolchain Implementation. We implement our automa-
tion tool in LLVM 3.4 and Clang 3.4 C / C++ front-end to transform
C / C++ applications [1,6]. For our case studies, we log all the anal-
ysis information which is used for the layout analysis and also to
facilitate our developer-assisted improvements study. Our transfor-
mation pass applies deterministic multiplexing to the programs at
the LLVM IR level.
Empirical Validation. Our applications are compiled into static
binaries for testing. We run these executables on PODARCH [44]
which is implemented on QEMU emulator, and only supports static
linking. To test our patched applications, we execute the stan-
dard regression test-suite available with the cryptographic libraries
(make check). To empirically validate that our defenses work,
we ensure that the page fault profile of patched executions under
all test inputs is indistinguishable w.r.t. page access profiles. To
verify the correctness, we analyze the page fault access patterns
in the transformed application using a PinTool [4] that logs all in-
structions and memory accesses. We have analyzed the PinTools
logs and report that our deterministic multiplexing produces indis-
tinguishable page access profiles for all regression and test inputs.

6.3 Performance Evaluation
Normalized Baseline. To ensure that the choice of our evaluation
platform (PODARCH) does not significantly bias the overheads, we
conduct two sets of measurements. First, we run the unmodified
OpenSSL and Libgcrypt implementations on PODARCH and mea-
sure the execution time. This forms the baseline for all our perfor-
mance measurements. Column 3, 4 in Table 2 shows the number of
page faults and the execution time for vanilla code in PODARCH.
Second, to check that the overheads of our defenses are not an arti-
fact of PODARCH, we also run our vanilla and modified binaries on
native Intel CPU Intel Core i7-2600 CPU. The overheads on a na-
tive CPU are similar to that on PODARCH and deviate only within
a range of 1%. This confirms that our baseline of PODARCH does
not skew our experimental results significantly.
Overhead. We calculate the overhead by comparing the base-
line performance of unmodified code against the execution time of
the patched application functions. We use input patterns to repre-
sent the best, worst and average case executions of the application,
specifically, inputs with (a) all 0s, (b) all 1s, (c) random number
of 0s and 1s, and (d) all the regression tests from the built-in test-
suite.

The applications patched with the deterministic multiplexing tech-
nique incurs an average overhead of 705× and up to maximum
overhead of 4000× in case of powm (Column 10 in Table 2). To
investigate the main sources of these overheads we measure the
break-down for the fetch step and the execute step in deterministic
multiplexing. We observe that the overhead is mainly dominated
by the copying of data to and from the staging area in the fetch step
(Column 6 and 9 in Table 2), and accounts for 76.5% out of the
total overhead on average. We notice that the fetch step time is es-
pecially high for cases like Stribog and Tiger where it accounts for
96.82% and 99.16% of the overhead.

6.4 Effectiveness of Optimizations
We apply the developer-assisted strategies discussed in Section 5

to experimentally validate and demonstrate their effectiveness. They
reduce the average overhead from 705× to −2.7% for our 10 case
studies; 29.22% in the worst case. In the case of powm, O3 reduces
the performance overhead from 4000× to 74×. With O4 we com-
pletely remove memory copying for code determinization which
reduces the overhead from 74× to 3.67%. We apply O1 to the 8
cases of input dependent data page access to reduce the number of



copy operations. Further we also apply O2 to reorder the lookup
table layout, such that after the developer-assisted transformations
are in place, the execution incurs lower page faults. In fact, our
patched version executes faster than the baseline code (as denoted
by negative overhead in Column 14 in Table 2) for 7 cases. After
manual inspection, this is explained because in the patched code,
the lookup tables take up less number of pages which reduces the
total number of page faults incurred during the execution (Column
12 in Table 2). On the other hand, in the vanilla case, the program
incurs more page faults which is a costly operation. Thus, eliminat-
ing this cost results in a negative overhead. For EdDSA, we directly
apply the peephole optimization O5 which transforms the input de-
pendent code access to data access. This reduces the overhead from
3000× to 29.22%.

7. HARDWARE-ENABLED DEFENSES
So far we have discussed purely software solutions. Readers

might wonder if pigeonhole attacks can be mitigated with hardware
support. Here, we briefly discuss an alternative hardware-assisted
defense which guarantees enclaved execution at an average cost of
6.77% for our benchmarks.

7.1 Our Proposal: Contractual Execution
We propose a hardware-software technique wherein the enclave

is guaranteed by the hardware that certain virtual addresses will al-
ways be mapped to physical memory during its execution. The en-
clave application is coded optimistically assuming that the OS will
always allocate specific number of physical pages to it while exe-
cuting its sensitive code blocks. The enclave informs its memory
requirements to the OS via a callback mechanism. These require-
ments act as a contract if the OS agrees, or else the OS can refuse to
start execution of the enclave. The enclave states the set of virtual
addresses explicitly to the OS before starting its sensitive compu-
tation. The CPU acts as a contract mediator and is responsible for
enforcing this guarantee on the OS. We term such an execution as
contractual execution. Note that the contract is not a hard guarantee
i.e., the enclave cannot pin the pages in physical memory to launch
a denial-of-service attack on the OS. In fact, the OS has the flexibil-
ity to take back pages as per its own scheduling policy. However,
when the CPU observes that OS has deviated from the contract —
either genuinely or by injecting random faults, it immediately re-
ports the contract violation to the enclave. This needs two types
of changes in the hardware (a) support for notifying the enclave
about its own page faults and (b) guaranteeing a safe mechanism
for enclave to mitigate the contract violation.
Contract Enforcement in SGX. In a traditional CPU as well as in
original SGX specification [7], all page faults are reported directly
to the OS without the intervention of the faulting process. Thus, the
process is unaware of its own page faults. This makes it impossible
for the enclave to detect pigeonhole attacks. For contractual execu-
tion, the hardware needs to report its faults to the process instead,
which calls for a change in the page fault semantics. A limited
amount of support is already available for this in SGX. As per the
new amendments in Revision 2, SGX can now notify an enclave
about its page faults by setting the SECS.MISCSELECT.EXINFO
bit [8, 10]. When an enclave faults, the SGX hardware notifies the
enclave about the fault, along with the virtual address, type of fault,
the permissions of the page, register context. We can think of im-
plementing contractual execution on SGX directly by setting the
SGX configuration bit such that when there is a page fault, the
enclave will be notified directly by the CPU. The benign OS is
expected to respect the contract and never swap out the pages dur-
ing the execution. However a malicious OS may swap out pages,

Malicious OS

CPU

4

Sensitive Computation

Enclave Fault Handler:
get k
wait (t- k )
terminate ()

Enclave

Bucket: {P1, P2, P3, P4}

2

1

3

Figure 9: Contractual Execution. (1) Enclave registers a con-
tract (2) CPU directly reports the fault to the enclave page fault
handler. (3) Enclave page fault handler fakes access for time t
- k and sends command to terminate. (4) Enclave fault han-
dler terminates the enclave.

in which case the CPU is responsible for reporting page faults for
these pages to the enclave directly.
Mitigating Contract Violation. When the CPU signals contract
violation and the control returns to the enclave, it is important to
terminate the program safely, without leaking any information (See
Figure 9). When the enclave is notified about contract violation, it
is the enclaves responsibility to decide whether to handle the fault
or ignore it. One straightforward way to handle the fault is termi-
nate the enclave, but our observation is that immediate program ter-
mination leaks information. In our solution, our goal is to hide the
following facts (a) whether the enclave incurred a page fault dur-
ing the execution after the contract is enforced (b) if so, at which
point in the execution tree did the fault occur. To this end, in our
defense we intercept the page faults from the underlying hardware
and from that point of contract violation, we perform a fake exe-
cution to suppress the location at which the fault happened. This
defense can only work if we can ensure that the enclave page fault
handler is necessarily invoked. In the present SGX design it is un-
clear if the hardware can guarantee the invocation of the page fault
handler. So we propose that SGX can adopt this solution in the
future. The details of this mechanism are a bit involved and for
brevity we discuss it in the extended version for interested read-
ers [43]. We have implemented this defense in PODARCH and our
evaluation on Libgcrypt 8 shows that such an approach incurs an
overhead of 6.77% which is much lower as compared to the purely
software based solutions (Table 3). We elide the details here due to
space limits. Please refer to [43] for details.

7.2 Discussion: Other Alternative Approaches
Randomization of Page Access. Oblivious RAM (ORAM) is a
generic defense that randomizes the data access patterns [25, 46].
Intuition suggests that the enclave can use ORAM techniques to
conceal its memory access pattern. In this case, when an adver-
sary observes the physical storage locations accessed, the ORAM
algorithm will ensure that the adversary has negligible probability
of learning anything about the true (logical) access pattern. For our
AES example, we can place the tables in an ORAM to randomize
their ordering, such that the adversary cannot distinguish which off-
sets in the tables are accessed. However, ORAM involves continu-
ous shuffling and re-encryption of the data after every access. In our
case studies, the lookup operations dominate the computation in
cryptographic implementations. For millions of accesses, the cost
incurred for the shuffling is significant poly log (say over 1000×)
and slows down the applications, which is not desirable [42]. Fur-

8We did not implement contractual execution for OpenSSL be-
cause it requires dynamic loading which is not supported in PO-
DARCH.



Table 3: Evaluation. Column 2 denotes the bucket size (Code + Data). Columns 5 and 7 denote average execution time and deviation
in benign OS. Columns 8-10 denote total time spent for 3 test-case scenarios that stress the corner cases in Libgcrypt. Both the
executions exhibit no statistically significant differences.

Cases Bucket
Size

PF
Handler
(Bytes)

Benign OS Malicious OS

Vanilla
Time (ms)

Contractual
Time (ms) Ovh (%) Dev (%) T1 (ms) T2 (ms) T3 (ms)

AES 3 + 3 274 4.157 4.161 0.107 4.689 4.287 4.179 4.059
CAST5 1 + 2 231 2.901 2.969 2.34 9.938 3.054 3.003 2.845
EdDSA 19 + 1 204 9729.526 9754.806 0.260 35.952 9960.311 9815.837 10146.534
powm 21 + 1 256 4783.997 4813.028 0.607 12.225 5155.958 5103.789 5224.345
SEED 2 + 2 261 1.269 1.381 8.917 4.821 1.337 1.392 1.333
Stribog 1 + 5 253 0.803 0.874 8.957 1.940 0.863 0.879 0.887
Tiger 1 + 3 244 0.506 0.644 27.255 4.876 0.667 0.659 0.675
Whirlpool 1 + 5 245 12.680 13.409 5.746 1.338 13.559 13.451 13.308

Average 6.77

ther, the best known ORAM technique requires a constant private
storage for shuffling the data blocks [34]. In case of pigeonhole
attack in SGX, the private storage is not permanently available to
the enclave and the OS can probe operations on private memory
via page faults. Thus, additional hardware support is necessary for
ORAM based randomization to justify the assumption of a secure
constant private storage.
Self-Paging. Instead of relying on the OS for page management,
the enclaved execution can take the responsibility of managing its
memory. Applications can implement self-paging to deal with their
own memory faults using their own physical memory to store page
tables [26]. In self-paging CPU design, all the paging operations
are removed from the kernel; instead the kernel is simply respon-
sible for dispatching fault notifications. Given a fixed amount of
physical memory, the enclave can decide which virtual addresses
are mapped to this memory, and which are swapped out. The prob-
lem with self-paging is — how can the enclave ensure that the OS
has allocated physical pages to it? To guarantee this, the enclave
should be able to pin certain physical memory pages, such that the
OS cannot swap them out. This directly opens the possibility for
a denial-of-service attack from the enclave, because it can refuse
to give up the pinned pages. A hardware reset would be the only
alternative to reclaim all the enclave pages, which is an undesirable
consequence for the OS. Another possibility is that the enclave per-
forms self-paging without assuming fixed private physical memory.
But this is unsafe, since the OS still controls how much memory
to allocate to the enclave, retaining the ability to pigeonhole the
memory pages. In both the above alternatives, there is a dilemma
— should the enclave trust the OS and likewise. Hence, it is un-
clear how self-paging, with or without fixed physical memory, can
defend against pigeonhole attacks.

8. RELATED WORK
Attacks on Enclaved Execution. Xu et al. have recently shown
that the OS can use the page fault channel on applications running
on SGX based systems to extract sensitive information [51]. The
attacks are limited to general user programs such as image and text
processing. On the contrary we study a cryptographic implemen-
tations which is specific class of applications more relevant in the
context of enclaves. More importantly, we show that the purported
techniques discussed are not effective against pigeonhole attacks.
As as a new contribution, we propose and measure the effective-
ness of concrete solutions to prevent against such attacks on cryp-
tographic implementations.
Side-channel Attacks. Yarom et al. study cache channel attacks
wherein the adversary has the power to flush and reload the cache,

which can be used to attacks elliptic curve cryptographic routines
such as ECDSA [52]. Timing and cache attacks have been used
to by-pass kernel space ASLR [29], VMs [30], android applica-
tions [31], cloud servers [55] and users [40] both locally and re-
motely [14]. Even web browsers can be exploited remotely via
cache attacks on JavaScript [39].
Side-channel Detection & Defenses. Various detection mecha-
nisms have been explored for side channels ranging from instruc-
tion level analysis to compiler techniques [16, 23, 53]. Tools such
as CacheQuant can automatically quantify the bits of information
leaked via cache side-channels [33]. Techniques such as input
blinding, time bucketing are also available but are limited to spe-
cific algorithms [32]. Side channel attacks in hypervisors, cloud
VMs, kernel are mitigated using determinising strategies, control-
flow independence and safe scheduling [9, 38, 50, 56]. Our deter-
ministic multiplexing defense is similar to memory-trace oblivious-
ness techniques proposed for secure computation [35].
Randomization & Self-paging Defenses. ORAM techniques are
widely used in secure computation and multi-party computations.
Recent work demonstrate safe language, compiler techniques, and
hypervisor based approaches which use ORAM. As discussed in
Section 7.2, ORAM techniques may be insufficient without extra
hardware support. On the other hand, self-paging assumes that the
enclave will always have control over a fixed size [26]. In case that
either party breaks this assumption, it opens a potential for DOS
from enclave and pigeonholing from the OS.

9. CONCLUSION
We systematically study pigeonhole attack, a new threat preva-

lent in secure execution platforms including Intel SGX, InkTag,
OverShadow and PodArch. By analyzing cryptographic implemen-
tation libraries, we demonstrate the severity of pigeonhole attacks.
We propose a purely software defense called deterministic mul-
tiplexing and build a compiler to make all our case studies safe
against pigeonhole attacks. It is practically deployable with mod-
est overhead. Finally, we present an alternative hardware-based
solution which incurs an average overhead of 6.77%.
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