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ABSTRACT

Exceptions are a commodity hardware functionalitywhich is central

to multi-tasking OSes as well as event-driven user applications.

Normally, the OS assists the user application by lifting the semantics

of exceptions received from hardware to program-friendly user

signals and exception handling interfaces. However, can exception

handlers work securely in user enclaves, such as those enabled by

Intel SGX, where the OS is not trusted by the enclave code?

In this paper, we introduce a new attack called SmashEx which

exploits the OS-enclave interface for asynchronous exceptions in

SGX. It demonstrates the importance of a fundamental property

of safe atomic execution that is required on this interface. In the

absence of atomicity, we show that asynchronous exception han-

dling in SGX enclaves is complicated and prone to re-entrancy

vulnerabilities. Our attacks do not assume any memory errors in

the enclave code, side channels, or application-specific logic flaws.

We concretely demonstrate exploits that cause arbitrary disclo-

sure of enclave private memory and code-reuse (ROP) attacks in

the enclave. We show reliable exploits on two widely-used SGX

runtimes, Intel SGX SDK and Microsoft Open Enclave, running

OpenSSL and cURL libraries respectively. We tested a total of 14

frameworks, including Intel SGX SDK and Microsoft Open Enclave,

10 of which are vulnerable. We discuss how the vulnerability mani-

fests on both SGX1-based and SGX2-based platforms. We present

potential mitigation and long-term defenses for SmashEx.
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• Security and privacy→ Trusted computing; Software secu-
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1 INTRODUCTION

Exceptions are a basic functionality available on modern processors

and are ubiquitously used by the OS and real-world applications.

The OS makes use of exceptions for multiplexing processes and re-

sources, e.g., via timer interrupts and page faults. Applications use

programmatic constructs, such as exception and signal handling,

to deal with dynamic events or runtime errors. The underlying

OS is in charge of monitoring and delivering hardware generated-

exceptions to a user process. This design allows application devel-

opers to focus on what to do when an event occurs.

Recently, a new form of hardware isolation has been enabled

by enclaves such as those provided by Intel SGX. SGX allows user

applications to be partitioned into hardware-isolated compartments

called enclaves, which are protected from privileged system soft-

ware (e.g., the hypervisor and the OS). The main guarantee provided

by enclaves is protecting the confidentiality and integrity of code

running in them. Enclaves are an important step, for example, to-

wards reducing the dependence on privileged OSes and towards

confidential computation [3, 4]. This presents a unique security

modelÐa trusted enclave running alongside an untrusted OS. This

paper studies how exceptions are handled on SGX, a platformwhere

the OS and user enclave do not trust each other.

Exceptions are events that hardware generates and software

handles. There are two design choices for enabling exceptions for

enclaves. The trusted hardware can directly deliver the exceptions

to the enclave code. Alternatively, the hardware can deliver it to the

OS, as in non-SGX systems. The current SGX implementation takes

the second approach. In such a design, the OS can route an exception

to the enclave along with the description of the exception event.

Once the exception is delivered to the enclave by either mechanism,

the enclave can execute the exception handler. Since the enclave

does not trust the OS, this interface requires careful design to ensure
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security. There are three entities interacting: the user enclave, the

trusted SGX hardware, and the untrusted OS.

Many exceptions are synchronous in the sense that the enclave

code can control when these exceptions are raised. But, certain

exceptions are asynchronous, i.e., they can be triggered outside the

control of the enclave. The OS has the power to trigger such excep-

tions at any time. The design of any hardware enclave abstraction

that supports asynchronous exceptions needs to provide at least

three security properties on enclave-OS context switches:

• Register state save/restore.When an exception interrupts an

enclave, the integrity and confidentiality of the requisite

enclave register state should be preserved in the presence of

a malicious OS.

• Safe control resumption. After an exception, the execution

resumes either at the point of interruption or at the start of

an enclave-defined handler.

• Atomicity. The hardware must support sufficient mecha-

nisms for the enclave to prevent exception handling when it

is executing inside certain critical sections.

The SGX hardware provides the first two properties, but not

the third. An enclave can turn off delivery of certain programmer-

defined exception throughout its execution by statically setting

its hardware configuration. However, if the enclave does not stati-

cally disable exceptionsÐwhich is useful for signal handlingÐSGX

does not allow the enclave to selectively mask exceptions at certain

times during execution. This effectively means that the SGX hard-

ware does not provide any explicit runtime primitives for ensuring

atomicity of critical sections in the enclave, when exceptions are

statically enabled. The lack of such a primitive opens up enclaves to

re-entrancy vulnerabilities which can in turn lead to serious exploits.

To demonstrate this clearly, we introduce a powerful attack called

SmashEx, which does not assume any side channels or pre-existing

memory safety bugs in the enclave application code. We success-

fully execute the attack to compromise both confidentiality and

integrity guarantees for enclave applications on SGX. Our attack on

SSL implementations for instance can cause a malicious OS to spill

out secret keys residing in private memory. To demonstrate the

full power of SmashEx, we leverage the re-entrancy vulnerability

to effect code-reuse (e.g., ROP [50]) and arbitrary memory disclo-

sure attacks on enclaves. We construct end-to-end PoC exploits for

two widely-used SGX runtimes: Intel SGX SDK [16] and Microsoft

Open Enclave [45]. We target an OpenSSL implementation based

on Intel SGX SDK and the cURL application based on Open Enclave

respectively. The attacks are demonstrated on the latest SGX2 hard-

ware, but also extends to SGX1 runtimes that have asynchronous

exception handling enabled.

In this paper, we explain why the root re-entrancy vulnerabil-

ity exploited by SmashEx is fundamentalÐif we want to support

asynchronous exception handling on SGX, careful re-entrant de-

sign in the enclave is critical. In total, we survey 14 SGX runtime

frameworks and deem that the vulnerability affects 10 of them on

SGX2. While the exploits do not immediately carry over to 4 of

the runtimes, we point out that this comes at the cost of a limit to

their exception handling functionality or extra complexity in their

design and implementation. We discuss the effectiveness of vari-

ous software mitigations for SmashEx. We recommend potential
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Figure 1: SGX enclave interfaces and memory protection.

hardware abstractions for exposing atomic execution primitives to

enclaves to simplify defenses. These may be of independent interest

to future enclave designs.

Contribution.Much prior attention has been devoted to safe data

and control exchange at the enclave-OS interface (e.g., for Iago

attacks [34]). Our main contribution is to highlight a third missing

defense primitive at the enclave-OS interface: ensuring atomicity in

re-entrant enclave code. When enclaves support the standard pro-

grammingmodel of asynchronous exceptions, re-entrancy concerns

arise. Our SmashEx attack makes this issue concrete for study.

2 BACKGROUND

Intel SGX introduces the notion of enclavesÐhardware isolated

memory regions for sensitive execution. We refer to the code that

executes inside an enclave as enclave software. The code and the

data of enclave software, including its stack (enclave private stack),

are stored inside enclave memory and protected by the SGX hard-

ware. In the SGX trust model, only the hardware and the enclave

software are trusted. All the other software on the system, including

privileged software such as the OS, is considered untrusted. This

includes the user process in charge of creating and interacting with

the enclave, which we refer to as its host process. The SGX hardware

does not allow the untrusted software to access enclave memory.

However, enclave software can read or write memory regions out-

side the enclave boundary, which are also accessible to the host

process. We refer to such a shared virtual address space accessible

to both an enclave and its host process as the public memory.

Enclave software requires mechanisms to request services from

the non-enclave/OS code as well as to receive notifications (e.g.,

signals) from it. The SGX hardware has two kinds of interfaces,

synchronous and asynchronous, for switching between the OS and

an enclave. Figure 1 depicts such interfaces alongside the protected

memory region for an SGX enclave.

Synchronous Entry/Exits. Synchronous entry/exits are needed

in enclaves to interface with the host application and the OS for

synchronous or blocking communication. To help safeguard the

interface, the SGX hardware strictly restricts the transfer of control

between enclave and non-enclave code. Two specific instructions,

EENTER and EEXIT, are used to synchronously enter and exit an

enclave respectively. The EENTER instruction jumps to a fixed en-

clave entry point that is pre-configured during enclave creation.
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Figure 2: Synchronous entry/exit in an ocall on SGX.

An enclave can specify a public memory location and exit to it via

the EEXIT instruction. EENTER and EEXIT do not scrub or replace

the register state during context switches. Instead, the hardware

keeps most of the registers unchanged. It is the responsibility of the

enclave software to prepare the register state for enclave execution

after EENTER and to prevent leaking secrets through the register

state after EEXIT. This is necessary for normal functionality, for

example, to propagate any data arguments between the enclave and

the OS. An enclave can provide functions for untrusted software

to invoke in a so-called ecall, which consists of a paired EENTER

and a subsequent EEXIT. In addition, synchronous entry/exits can

also be used to support ocalls, where enclaves request to invoke

functions provided by untrusted software (shown in Figure 2).

Since EEXIT and EENTER do not take care of the register state,

the enclave code has to save the enclave CPU context on its private

stack and restore it when returning from the ocall later. The ocall

interface has been the subject of much scrutiny in prior work,

largely due to the risk of Iago attacks [34, 42, 56, 59].

Asynchronous Entry/Exits. In addition to synchronous exits, an

enclave can exit asynchronously as a result of exceptions (e.g.,

timer interrupts, page faults, division-by-zero). During such an

AEX (Asynchronous Enclave eXit), the enclave stores the current

enclave execution context in a special data structure called the

State Save Area (SSA) located inside the enclave private memory.

Asynchronous entry/exits are different from synchronous events

because they can arise at any time during the enclave execution,

interrupting it involuntarily. To ensure safe enclave-OS transitions,

the SGX hardware implements the following mechanisms:

• Safe control resumption. At an AEX, the hardware automati-

cally stores the current instruction pointer (rip) in the SSA.

The untrusted host process may execute an ERESUME instruc-

tion later to transfer control back to the enclave. At this point,

SGX hardware enforces that the enclave resumes execution

from the rip value stored inside the SSA.

• Register save/restore. In addition to rip, the hardware saves

the remaining enclave execution context (e.g., general-purpose

registers) in the SSA. Before exit, the hardware scrubs the

register values to prevent data leakage through them. On

ERESUME, the hardware restores the register values from SSA.

Asynchronous ExceptionHandling in SGXEnclaves.The sim-

ple mechanisms above are sufficient to protect an enclave while
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Figure 3: Exception handling mechanism in Intel SGX SDK.

The SGX hardware performs an AEX and transfers the con-

trol to the OS when an exception occurs ( 1○ 2○). The OS deliv-

ers a corresponding signal to the host process, which then re-

enters the enclave via EENTER ( 3○). The enclave performs in-

enclave exception handling ( 4○) and exits to the host process

via EEXIT ( 5○), which then resumes the enclave execution via

ERESUME ( 6○). During this process, the CPU state of the in-

terrupted enclave is first saved into the SSA upon the AEX,

fromwhich it is then copied to the enclave private stack dur-

ing in-enclave exception handling.

allowing exceptions to interrupt its execution. However, in order

to also allow the enclave to handle exceptions (including decid-

ing the resumption point by modifying the SSA content), a more

complex mechanism is designed (shown in Figure 3) in SGX run-

times. Instead of resuming the enclave immediately via ERESUME,

the untrusted host process re-enters the enclave using EENTER and

passes relevant information about the exception. Note that this

new flow starts with a normal EENTER which leaves the rsp value

uninitialized, so the enclave has to set up its private stack before

executing any real exception handler. In both Intel SGX SDK and

Microsoft Open Enclave (among others; see Section 8), the enclave

loads the stack pointer from the saved rsp in the SSA, effectively

reusing the same stack of the interrupted thread. After the enclave

finishes handling the exception in the SDK, it uses EEXIT to return

control to the untrusted software, which then resumes the enclave

execution via ERESUME.

Key Observation. To perform exception handling, the enclave

needs to be re-entered and operate on a context that overlaps with

that of the interrupted thread. Therefore, the above design for in-

enclave handlers requires the enclave to be re-entrant.

SGX Runtimes. Since the SGX enclave programming model is sig-

nificantly different from a traditional one, it can be cumbersome for

developers to use the low-level SGX interfaces. Therefore, enclave

developers usually use frameworks that provide high-level abstrac-

tions to hide away the details of exception handling, ocall, ecall,

and so on. Such software frameworks, referred to as SGX enclave

runtimes in this paper, execute inside enclaves. Since runtimes are

a part of the enclave trusted computing base, their design and im-

plementation are crucial to the security of enclave applications.

We survey 14 runtimes (Table 1) and find that they have varying

degrees of exception handling support.
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Software Version
Vulnerable

to SmashEx?

Exception

handling

Intel SGX SDK [16] 2.13 a a

Microsoft Open Enclave [46] 0.15.0 a a

RedHat Enarx [12] 02dab73 a a

Graphene-SGX [33] 1.1 d a

Apache Teaclave [1] 0.2.0 a a

Google Asylo [29] 0.6.2 a a

Fortanix Rust EDP [39] 3341ce1 d d

Alibaba Inclavare [14] 0.6.0 d d

Ratel [24] 1.1 d a

SGX-LKL [49] b6e838e a a

EdgelessRT [11] 8a6f11f a a

Rust SGX SDK [62] 1.1.3 a a

CoSMIX [48] 4e67f55 a a

Veracruz [26] cbf01a9 a a

Table 1: Summary of different enclave runtime designs.

adenotes that the enclave runtime is deemed exploitable by

SmashEx andd denotes that the enclave runtime is deemed

unexploitable by SmashEx under any enclave settings. For

the exception handling,a denotes handling asynchronous

exceptions is supported in enclaves andd denotes no sup-

port for handling exceptions in enclaves.

3 ATTACK OVERVIEW

An enclave must be re-entrant to safely handle exceptions by itself.

However, an important primitive, namely atomicity, is missing. We

illustrate the need for atomicity by outlining SmashEx, a novel

attack that exploits a re-entrancy vulnerability present in many

SGX frameworks.

3.1 Threat Model

Assumptions. The security-sensitive part of the application exe-

cutes, together with any runtime libraries, in the victim enclave.

The enclave interacts with the external environment, including the

OS and the host process, which are assumed to be arbitrarily mali-

cious. The SGX hardware is trusted. The enclave code is assumed

to be benign and we do not assume that it has any auxiliary bugs

or side channels that aid the attacker. We assume that the enclave

code, however, is running without ASLR (Address Space Layout

Randomization), i.e., certain critical addresses are deterministic and

known to the attacker. This is the default setup on nearly all SGX

platform runtimes we have surveyed. We discuss how to extend our

attacks when ASLR or other auxiliary defenses are enabled in Sec-

tion 9. The enclave is assumed to have enabled the asynchronous

exception handling interface.

Attack Goal & Scope. Our attack goal is to break the basic mem-

ory protection guarantees offered by SGX enclaves. Specifically,

we aim to break confidentiality by enabling an arbitrary memory

disclosure attack by which the attacker can reveal the victim en-

clave memory contents in full. To break integrity, our attack aims

to enable ROP attacks in the enclave. Most runtimes that support

in-enclave exception handling are susceptible to our attack. In our

survey summarized in Table 1, 12/14 runtimes support this func-

tionality. Among the 12 runtimes, we find that 10 are susceptible to

Enclave moves
regs to stack

Enclave 
cleans regs

Enclave ret 
uses stack

Invalid page 
permissions

Interrupt handler

HW moves
regs to SSA

Fixed entry: HW 
preserves regs

Ocall impl moves 
values to regs

EEXIT EENTER #PF

AEX

Exception handler
moves SSA to stack

EENTER EEXIT ERESUME

HW moves
SSA to regs

A B C

Figure 4: State diagramdepicting the re-entrancy vulnerabil-

ity. The clear boxes denote enclave states, and the gray boxes

denote OS states. The solid black arrows show the ocall ex-

ecution flow where the dotted black box denotes the critical

section. The dashed red arrows show the in-enclave excep-

tion handling flow, injected by the OSwhen the enclave is in

critical section, thus corrupting the enclave state (i.e., stack).

the SmashEx attack. We present proof-of-concept (PoC) exploits

for two of the most popular runtimes, Intel SGX SDK and Open En-

clave, as case studies in Section 7. Intel SGX SDK is widely used in

multiple other runtimes and Open Enclave is part of the Microsoft

Confidential Computing Framework (CCF). Since SmashEx arises

directly on the enclave-OS interface, any application that uses a

vulnerable runtime is exploitable. We have also constructed PoC

exploits for all but RedHat Enarx, for which we have confirmed the

exploitability through code inspection (see Section 8).

3.2 The Re-entrancy Vulnerability

To demonstrate the re-entrancy issue clearly, we outline the flow of

exception handling on Intel SGX SDK for SGX2, both under normal

execution and under a SmashEx attack. It executes similarly on

SGX1 and extends to other runtimes (see Section 8).

Consider the flow that handles returning from an ocall. Fig-

ure 4 shows this flow with black solid arrows inside the dotted

box, which executes logic labeled 𝐴 → 𝐵 → 𝐶 in that sequence.

This flow, however, can be interrupted when asynchronous excep-

tions arrive. The dashed red arrows in Figure 4 show the execution

flow when handling in-enclave exceptions corresponding to the

EENTER→ EEXIT→ ERESUME previously highlighted in Section 2.

Both flows are benign, but operate on overlapping enclave con-

texts. This clearly highlights that such ocall return flow and the

exception handling flow should be written with care to ensure that

they interleave safely. Specifically, when the ocall return flow is

interrupted, the enclave should be in a consistent state for the ex-

ception handling flow to progress correctly, and when the exception

handling flow completes, the enclave state should also be ready for

the enclave to resume. This adds considerable complexity when

in-enclave exceptions are to be supported, regardless of whether

the OS is acting maliciously.

In this example, themain vulnerability point that enables SmashEx

is in the ocall return flow, which requires atomicity for executing

certain critical sections that update the enclave context (shown

in the dotted black box in Figure 4). The state transitions for the

ocall return flow must check and clean up the register values re-

turned by the OS and then use them to set up the enclave private

4
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Figure 5: Sub-components of SmashEx. (a) Injecting an AEX at the fixed entry point; (b) Corrupting the in-enclave memory

(corrupted data is depicted in red); (c) Returning to the target that the attacker has specified in the controlled anchor (in blue).

stack. Before this is finished, the enclave is in an inconsistent state,

with register values (in particular, the stack pointer rsp) provided

by the untrusted OS.

It is important, therefore, that the enclave should not be inter-

rupted to perform exception handling when it is still executing

in such an inconsistent state. However, the SGX enclave abstrac-

tion does not provide primitives for ensuring atomic execution of

critical sections in the enclave. For example, it is not possible to

selectively mask interrupts for certain critical sections. The enclave

must either statically disable all user-defined asynchronous excep-

tion handling1 or risk being interrupted arbitrarily if exception

handling is statically allowed. The lack of atomicity results in a

powerful attack vector which SmashEx leverages.

3.3 High-level Attack Steps

As illustrated in Figure 5, SmashEx starts with the attacker trig-

gering an exception immediately after the enclave is entered (via

EENTER) to return from an ocall (Figure 5a). The hardware copies

the attacker-controlled registers into the SSA region, which the en-

clave exception handler in turn uses to determine the stack address

and the data to later use. This gives the attacker the capability of

corrupting the stack content of the enclave (Figure 5b). By carefully

crafting the register values, the attacker can exploit this capability

to corrupt an enclave stack location that the enclave will later use

to load a return address (we call this location an anchor), thereby

hijacking the control flow of the enclave (Figure 5c). Figure 6 de-

scribes the detailed steps SmashEx follows, which we will discuss

in Sections 4, 5, and 6.

3.4 Difference to Prior Attacks

SmashEx is the first attack that demonstrates the exception han-

dling attack vector in Intel SGX. that SmashEx is conceptually close

to known prior attacks on enclave memory safety, synchroniza-

tion, and scheduling. However, SmashEx is significantly different.

Briefly, previous attacks assume much more than SmashEx:

• AsyncShock [2] assumes that the synchronization logic (e.g.,

using mutexes) between two or more enclave threads is

buggy. In contrast, the vulnerability SmashEx exploits arises

due to atomicity violation in the enclave-OS interaction, to

which thread synchronization is irrelevant.

1In SGX, the runtime can disable all in-enclave exception handling by setting the
TCS.NSSA enclave configuration to one.
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6

Restore in OCALL 
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Exception handler:

xor %xdx,%xdx
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sp=ssa.rsp;

info=(info*)sp;

info.r8=ssa.r8;
...

xor %xdx,%xdx

...

Figure 6: SmashEx Overview. The attacker directly controls

the untrusted software, including the OS and the host pro-

cess. Data that the attacker can control is in red.

• Game of Threads [61] shows that by manipulating thread

scheduling, a malicious OS is able to stably exploit faulty

thread synchronization logic in enclave applications. For

example, for machine learning training workloads without

frequent thread synchronization, malicious scheduling can

degrade accuracy and bias the model.

• The Guard’s Dilemma [31] assumes the existence of memory

vulnerabilities in the enclave application and uses them to

demonstrate code-reuse attacks such as ROP. In SmashEx,

we do not assume any such pre-existing memory errors.

4 ARBITRARYWRITE CAPABILITY

The SmashEx attack starts with enabling the attacker to perform an

arbitrary write to an attacker-specified anchor location (Figure 5a).

Step 1: PreparingMaliciousRegisterValues.The attacker loads

malicious values into registers right before EENTER to ensure that

the attacker-specified register state is preserved.

Step 2: Injecting an Exception at the Precise Time/Location.

SmashEx requires that the AEX event occurs shortly after enclave

entry, before the enclave cleans up the register state. There are at

least two ways to achieve this:

5



(a) Page faults.We identify the page that contains the first enclave

instruction and pre-set its access permissions to be non-executable.

The malicious OS is still in charge of the enclave page permissions

and can trivially do this. In particular, the OS knows the exact page

address because it has to set up the enclave memory layout before

launching an enclave. Note that this address cannot be hidden from

the attacker (e.g., via randomization [31, 52]) because the hardware

has to know the exact entry point for the enclave. As described

in Section 3, we use this mechanism to trigger a page fault when

the enclave attempts to execute the first enclave instruction. When

the page fault is triggered, the hardware delivers it to the attacker-

controlled OS, which then forwards it to the enclave for handling.

(b) Timer interrupts.We can also interrupt the enclave execution

via the APIC timer. Prior work [60] has shown that the OS can

invoke the APIC timer interface to precisely interrupt the enclave

execution at any desired point. The remaining challenge is to inject

the timer interrupt at the exact moment. Before returning from an

ocall, we set the APIC timer to the one-shot mode. We set the

timer count such that the interrupt will occur immediately after

EENTER. In order to stably achieve this, we execute the enclave

in debug mode and tune the timer count to interrupt at the right

time. In our experiments, when we reuse this same timer count in

production mode, we can reliably inject the interrupt.

Step 3: Re-entering the Enclave for Exception Handling. Af-

ter the untrusted OS gains control because of the AEX, it re-enters

the enclave (via EENTER) for handling the exception. This time, the

attacker allows the enclave to progress after the enclave entry by

reverting the access protection to the original permissions, if page

faults are used in Step 2.

Step 4: Tricking the Enclave into Using Malicious Values. To

handle the AEX, the enclave first needs to prepare the enclave stack

for the in-enclave handler by loading the rsp register from the SSA

(see Section 2). It then copies the SSA content onto this stack for

the handler to use as function arguments. Since the attacker can

control the values of rsp and the other saved registers in the SSA,

it has gained the capability of tricking the enclave into writing an

attacker-specified value to an attacker-specified stack location. To

hijack the enclave control flow, the attacker uses this capability

to control an anchor, i.e., a location later used by the enclave to

retrieve a return address. More specifically, the attacker can choose

the stack location that stores the return address for the current

ocall as the anchor.

Achieved Capability. Using the above steps, the attacker has the

capability to write an arbitrary value to a particular location. This

write capability is the first part for scaffolding a control-flow hi-

jacking attack. In Sections 5 and 6, we explain how to leverage this

capability to effect powerful end-to-end attacks.

5 SETTING UP THE STACK

So far, the attack has only corrupted one anchor location on the

stack. Our final goal is to demonstrate a powerful ROP attack [50].

To this end, our next step is to escalate the attacker’s capability to:

• Point the stack pointer to an attacker-controlled region;

• Trick the enclave into using the value stored at the anchor

for a control-flow transfer.
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Figure 7: Enclave memory corruption by SmashEx during ex-

ception handling in Intel SGX SDK. The attacker is able to

control the stack pointer in the SSA (in red) and the anchor

on the enclave private stack (in blue). The other data that

the attacker can control in SmashEx is shown in gray.

Step 5: Pointing the Stack Pointer to Attacker Memory. A

ROP attack requires the attacker to control data on the victim’s

stack so gadgets can be strung together through a series of return

addresses. As illustrated in Figure 7, in the exception handling

process (Section 2), the in-enclave exception handler copies the

register state stored in the SSA region into a region of the enclave

private stack (say𝑀). This SSA state consists of a group of registers

which the SGX hardware has saved during the AEX event, and

which, as explained earlier, are attacker-controlled. The attacker

may therefore use 𝑀 to store the gadget addresses. To make the

enclave use this region as its stack, the attacker needs to point the

enclave rsp value to it after the ocall return is completed. This

can be easily done by setting the anchor value to the address of

a gadget that moves the value of a register (which the attacker

already controls through returning from ocall) into rsp.

SmashEx does not require the memory region for preparing the

gadget addresses to be the same as the region 𝑀 . Since the SGX

hardware allows an enclave to use a stack inside the public memory,

the attacker can simply set up the gadget addresses in a buffer in

the host process (located in the public memory), and use the same

method to point rsp to it. We use this strategy for our exploit on

Open Enclave and the earlier one for Intel SGX SDK.

Step 6: Effecting a Control Transfer Using the Anchor. After

Step 5, the region 𝑀 itself is the stack with attacker-controlled

values and the stack pointer (rsp) points to it. This is part of what

we need to start a ROP attack. It remains to cause a control-flow

transfer with the corrupted anchor value (Figure 5c). The exception

handler does not immediately use the anchor value after the copy

logic. Several control transfers and context switches2 happen before

the anchor is used, but the content of𝑀 remains unchanged.

Note that although it is possible to set the anchor to any value,

pointing it to the public memory will merely crash the enclave

(hence falling short of a code-reuse attack) since SGX enclaves

2The exception handler performs several other operations and exits the enclave using
an EEXIT instruction to the untrusted code, which then performs an ERESUME instruc-
tion to transfer control back to the enclave to complete the exception handling and the
ocall return flow interrupted. This part of the logic uses the anchor in a control-transfer
instructionÐthis is why we chose the anchor to be the return address used in resuming
after the last ocall.
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Figure 8: A chain of ROP gadgets in the malicious stack to

invoke memcpy with attacker-controlled arguments.

cannot execute code from public memory. For this reason, we must

confine the anchor value to private memory addresses.

Achieved Capability. At the end of Steps 5 and 6, the enclave

starts executing with the stack content controlled by the attacker.

By carefully crafting the stack content, the attacker is able to convert

this capability to a full-blown ROP exploit.

6 ROP EXPLOITS

At this point, the attacker can already control both the enclave

instruction pointer (rip) and the enclave stack content. Next, we

escalate the attacker’s capability to being able to execute a sequence

of ROP gadgets that exist in the enclave code [50]. We discuss the

ways to achieve this for two different goals: to steal enclave secrets

and to execute desirable ROP gadgets.

Goal 1. Compromising Enclave Confidentiality. Enclave run-

times (e.g., Intel SGX SDK, Open Enclave SDK) usually implement

their own memcpy function for in-enclave operations. Such a func-

tion performs memory copy on any accessible memory location

regardless of the enclave boundary, and accepts three arguments

that specify the source and the destination as well as the size of

the data to copy. The three arguments are passed in registers rdi,

rsi, and rdx. We can use this function in our chain of gadgets.

First, we set up arbitrary values into registers using memory-to-

register move gadgets. Thenwe chain a gadget to invoke the memcpy

function. This allows us to move arbitrary regions of memory to

arbitrary locations. For example, we can point the source address

argument to the start of the enclave and destination address to

a public memory region. Such a gadget will dump the entire en-

clave memory. Alternatively, we can point the source to sensitive

data (e.g., SSL keys, enclave ephemeral keys) to selectively leak se-

crets. To compromise enclave confidentiality, we use ROP gadgets

to manipulate the enclave to execute a memcpy function. Through

manual inspection, we find and locate memcpy implementations

in the trusted runtime code of both Intel SGX SDK and Microsoft

Open Enclave. We also find three pop reg; ret gadgets in the

runtimes that allow the attacker to populate the three registers with

values from the attacker-controlled external stack. As illustrated

in Figure 8, the attacker can perform the desired memcpy and steal

enclave secrets by chaining the ROP gadgets on the external stack.

Goal 2. Arbitrary Code Injection in Enclave. Similarly, the at-

tacker can copy arbitrary code to the enclave memory and execute

it. It points the source to a malicious code payload outside the

enclave and the destination to an enclave page. Specifically, if the

attacker sets the source to a prepared shellcode in the public mem-

ory and the destination to an executable and writable region in the

enclave private memory, it will be able to inject the shellcode to the

enclave. The attacker can then point the subsequent return address

on the external stack to the injected shellcode in the enclave to

execute it. Since certain applications such as JIT compilers need ex-

ecutable and writable enclave memory regions, SmashEx can inject

and execute arbitrary code. On an SGX2 platform where dynamic

adjustment of enclave page permissions is supported, SmashEx can

use ROP gadgets to make certain pages executable and writable

before injecting and executing the shellcode.

Other Desirable ROP Gadgets. In addition to the ROP gadget

chains discussed above, the attacker may also use others that serve

a wide range of goals. Prior work [31] has concluded that a ROP

attack in an SGX enclave can be very expressive. More specifically,

special gadgets available in an SGX runtime (e.g., Intel SGX SDK)

enable the attacker to control the entire register file if it already

controls rsp, rdi and rsi. SmashEx meets this criterion required

by previous attacks. We can therefore reproduce any attacks shown

by this prior work3 but without their assumptions of common

memory vulnerabilities such as buffer overflow in the enclave code.

7 ATTACKING REAL SYSTEMS

We present the low-level implementation challenges in executing

end-to-end attacks on two applications as case studies: an OpenSSL

port with Intel SGX SDK and a cURL port with Open Enclave.

We run all the victim enclaves and the SmashEx exploits on an

Intel NUC Kit NUC7PJYH with SGX2 support, 8 GB DRAM, 128MB

EPC, and a Ubuntu 18.04 installation (Linux kernel 5.4.0-72). For

SGX enclave runtimes, we use Intel SGX SDK 2.13, SGX driver 2.11,

and Open Enclave 0.15.0 [46], since these are the latest versions

available at the time of our experiments.

7.1 Intel SGX SDK

Case Study: OpenSSL v1.1.1i. Intel SGX SSL [17] is a crypto-

graphic library that uses OpenSSL [21] to provide general-purpose

cryptographic services (e.g., key generation, encryption/decryption

operations, decision-making statements) for SGX enclave applica-

tions. For our end-to-end attack, we target a test program bundled

with Intel SGX SSL, where the enclave generates a public/private

RSA key pair. By leaking this private key, we show that SmashEx

can breach the Intel SGX protections.

We have to locate the target in-enclave secret before we can

launch SmashEx. For this purpose, we disable ASLR system-wide

and pre-run the enclave once to record the addresses. In our attack

run, we wait for the enclave to invoke a specific ocall that reports

the result to the user after finishing the computation. We choose to

start our attack after this ocall, because by this point, the enclave

has created the private key in its private memory. To copy the

secret key to the public memory, we use the memcpy gadget chain

described in Section 6. The attack causes the enclave to copy the

1024-bit key to the public memory.

3For example, the attacker can chain the asm_oret and continue_execution gadgets
in Intel SGX SDK or oe_longjmp and oe_continue_execution in Open Enclave to
control a wider range of registers [31].
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Implementation Challenges.We encountered the following two

main challenges when launching SmashEx against Intel SGX SDK.

Bypassing overrun and alignment checks. During exception han-

dling, the SGX runtime performs security checks to sanitize and

ensure consistency of certain enclave states. For instance, the in-

enclave exception handler (see Listing 1) derives the stack pointer

from the SSA. Then it checks that the stack pointer is a valid enclave

stack address and satisfies a pre-defined alignment requirement.4

We set the malicious stack pointer to a legitimate enclave stack

address that obeys the required alignment to pass those checks.

1 ... // check validity of thread_data, tcs, stack canary, enclave state,

exception flag, ssa region

2 ssa_gpr = reinterpret_cast<ssa_gpr_t *>(thread_data->first_ssa_gpr);

3 sp = ssa_gpr->REG(sp);

4 ... // check stack overrun

5 info = (sgx_exception_info_t *)sp;

6 if(ssa_gpr->exit_info.valid != 1) { // exception handlers are not allowed to

call in a non-exception state

7 goto default_handler;

8 }
9 ...
10 info->cpu_context.r8 = ssa_gpr->r8;

11 ...
12 info->cpu_context.r15 = ssa_gpr->r15;

13 ... // alignment will be checked after exception is handled

Listing 1: Operations and security checks during exception

handling in Intel SGX SDK.

The ocall return logic (see Listing 2) also includes important

checks that our attack has to circumvent. For instance, before restor-

ing the ocall context,5 the enclave sanitizes the ocall context

pointer to ensure that it is on the enclave stack (Lines 3 and 5). In

addition, the enclave checks the validity of part of the ocall con-

text content (Lines 7 and 9). However, those checks do not cover the

data that SmashEx needs to overwrite. We craft a legitimate stack

pointer value to control the anchor without corrupting the checked

memory region. In this way, our attack bypasses the checks.

1 uintptr_t last_sp = thread_data->last_sp;

2 ocall_context_t *context = reinterpret_cast<ocall_context_t*>(thread_data->

last_sp);

3 if(0 == last_sp || last_sp <= (uintptr_t)&context)

4 return SGX_ERROR_UNEXPECTED;

5 if(last_sp > thread_data->stack_base_addr - 30 * sizeof(size_t))

6 return SGX_ERROR_UNEXPECTED;

7 if(context->ocall_flag != ocall_flag)

8 return SGX_ERROR_UNEXPECTED;

9 if(context->pre_last_sp > thread_data->stack_base_addr ||

10 context->pre_last_sp <= (uintptr_t)context)

11 return SGX_ERROR_UNEXPECTED;

12 thread_data->last_sp = context->pre_last_sp;

13 asm_oret(last_sp, ms);

Listing 2: Security checks before restoring the ocall context

in Intel SGX SDK.

Restoring host process stack after AEX. Recall that in Step 1 of

SmashEx, we prepare the rsp with a malicious address that points

to the enclave private memory. When we trigger an AEX in Step 2,

the hardware retains the rsp even after exiting the enclave. Ad-

ditionally, the hardware transfers control to the OS for kernel ex-

ception handling. The kernel generates a corresponding signal for

4In Intel SGX SDK 2.13, the is_valid_sp function performs such checks.
5ocall context is a data structure on the enclave stack that stores the context of the
enclave before an ocall.

the exception and wants to deliver the signal to the host process.

The kernel attempts to do this by using the rsp to place the signal-

related information on the host process stack. Since the rsp still

points to an in-enclave address, the kernel cannot perform this

operation. However, for Step 3 of our SmashEx, it is necessary that

the attacker handle this signal in the host process. We ensure that

when the OS accesses the rsp it is pointing to a host stack location

with the sigaltstack() system call, which allows a user process

to specify a separate signal handling stack. Alternatively, when the

attacker moves malicious values to rsp in Step 1, we can save the

current rsp in the host process. After the AEX, when the control

comes to the kernel, we restore the saved rsp value to the rsp

register. Note that the malicious rsp value has already been stored

in the SSA at this point. Therefore, we can safely change the rsp.

Our PoC integrates those two mechanisms to overcome the

implementation quirks of Intel SGX SDK.

7.2 Open Enclave SDK

Case Study: cURL v7.67.1. The cURL library implements a wide

range of application-layer network protocols, including HTTP,

HTTPS, SMTP, and so on. Open Enclave provides an official port

of cURL [47] to allow applications that require secure network pro-

tocols (e.g., HTTPS) to benefit from the protection of SGX. The

enclave private memory contains several pieces of sensitive in-

formation such as secure channel keys, enclave private keys, and

HTTPS plaintext responses.

We run SmashEx on an Open Enclave cURL test program and

dump the whole enclave private memory to the public memory.

This will allow us to extract all the secrets inside the enclave private

memory. We obtain the virtual address ranges of the enclave pri-

vate memory regions by consulting the untrusted library of Open

Enclave. The library is responsible for creating the enclave, and is

therefore aware of the enclave address space layout. To ensure that

the enclave private memory contains secret data at the time of our

attack, we wait for the enclave to finish sufficient ocalls before

launching the attack. In our experiment, we wait until right after

the 150𝑡ℎ ocall to start SmashEx, where we use the gadgets from

Section 6 to dump the enclave content. The dumped data in our

experiment includes secrets such as plaintext HTTPS responses.

Configuring the APIC Timer.We use the APIC timer to trigger

the AEX at the precise moment [60]. Typically, only the OS kernel

can configure the APIC timer. However, in order to trigger the

exception at precisely the first instruction of the enclave, we want

to shorten the time gap between configuring the APIC timer and

entering the enclave. Therefore, instead of configuring the APIC

timer inside the kernel space, we map the interface of the APIC

timer (memory-mapped I/O) directly to the address space of the

host process, and configure the APIC timer in the user space shortly

before entering the enclave via EENTER.

8 ATTACK EXTENSIBILITY

The ramifications of unsafe re-entrancy in enclave handlers go

beyond the target platform configurationsÐhardware version and

runtimeÐwe used for our end-to-end attacks.
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8.1 Extensibility to SGX1

SGX1 and SGX2 have the same exception handling mechanism.

The main difference is that in SGX2, the enclave can request the

hardware to notify the enclave about certain exceptions, such as

page faults. This allows enclaves to dynamically manage memory.

The attack steps described so far assume SGX2, but they largely

also apply to SGX1. Unlike SGX2, SGX1 does not support reporting

page faults to the enclave. When such an event occurs, the SGX1

hardware performs an AEX, but with one difference to SGX2: it

does so without setting SSA.EXITINFO.valid, a field in the SSA

region, to 1. Both Intel SGX SDK and Open Enclave perform a

validity check on this field in their exception handlers and only

execute the handler if SSA.EXITINFO.valid is 1. In Open Enclave,

by the time this check is done, SmashEx can already corrupt the

anchor. Therefore, SmashEx works on Open Enclave with SGX1.

In Intel SGX SDK, SmashEx needs to bypass the above check to

succeed. We examined the 8 exceptions (unconditionally supported

exceptions [15]) supported in SGX1. None can be used to trigger

the AEX at the enclave entry. As a result, we are not able to exploit

Intel SGX SDK on SGX1 with SmashEx.

However, this safety comes with a trade-off in functionality for

Intel SGX SDK: with this check in force, Intel SGX SDK disables

asynchronous events on SGX1 and does not support programming

primitives for user-defined signal handlers. The root vulnerability

(i.e., the lack of atomicity) is fundamental. We hypothesized that it

would affect SGX1 if Intel SGX SDK allowed execution of in-enclave

exception handlers, and confirmed our hypothesis by removing the

validity check in the Intel SGX SDK and repeating our attack. Our

PoC works successfully on Intel SDK for SGX1 with the one-line

validity check removed.

8.2 Extensibility to Other Enclave Runtimes

Apart from Intel SGX SDK and Open Enclave, we survey 12 other

enclave runtimes to understand how the vulnerability impacts them.

We report that 8 of them are vulnerable to SmashEx, and have

verified this by constructing SmashEx PoC exploits against them.

Derivatives of Intel SGX SDK & Open Enclave. In our survey,

8 enclave runtimes are based on either Intel SGX SDK or Open

Enclave SDK. Among them, 6 runtimes use Intel SGX SDK or Open

Enclave as it is, without any modification to the exception handling

logic. Those include Apache Teaclave [1], Rust SGX SDK [62], CoS-

MIX [48], and Veracruz [26] which are based on Intel SGX SDK,

and SGX-LKL [49] and EdgelessRT [11] which are based on Open

Enclave. Since all the relevant interfaces are still exposed and un-

changed, such runtimes inherit the vulnerability from the runtime

they are based on. The other 2 runtimes, Google Asylo [29] and

Ratel [24], use modified Intel SGX SDK. They have altered the be-

haviors of exception handling or other enclave interfaces relevant

to SmashEx and hence need to be examined individually. Google

Asylo [29] keeps the original exception handling interface and as

a result is vulnerable to SmashEx. However, it also provides an

alternative exception handling interface which uses a dedicated

stack and cannot be exploited by SmashEx. Ratel [24] is immune

to SmashEx because it uses a separate pre-allocated enclave stack

for exception handling. We discuss the dedicated-stack design in

details in Section 9.1.

Independent Runtimes. RedHat Enarx [12] has its own SGX run-

time independent of Intel SGX SDK and Open Enclave. Listing 3

shows how it sets up the exception handler stack shortly after

the enclave is re-entered for exception handling. Similarly to its

counterpart in Open Enclave, the code loads the saved rsp register

from the SSA region, shifts it by a fixed offset, and starts storing

untrusted register values at that location. We therefore conclude,

through our best-effort code inspection, that SmashEx would work

successfully on RedHat Enarx. Though open-source, RedHat Enarx

does not have fully functioning code base yet [13]. Thus, we were

not able to experimentally demonstrate and confirm that SmashEx

works on it.

1 shl $12, %rax # %rax = CSSA * 4096

2 mov %rcx, %r11 # %r11 = &Layout

3 add %rax, %r11 # %r11 = &aex[CSSA - 1]

4
5 mov RSP(%r11), %r10 # %r10 = aex[CSSA - 1].gpr.rsp

6 sub $128, %r10 # Skip the red zone

7 and $~0xf, %r10 # Align

8
9 mov SRSP(%r11), %rax # %rax = syscall return stack pointer

10
11 xchg %r10, %rsp # Swap to trusted stack

12 pushq $0 # Align stack

13 push %r10 # Save untrusted %rsp

14 savep # Save untrusted preserved registers

Listing 3: Exception handler stack setup in RedHat Enarx.

The other three runtimes developed independently of Intel SGX

SDK and Open Enclave SDKÐAlibaba Inclavare [14], Fortanix Rust

EDP [39], and Graphene-SGX [33, 58]Ðare deemed immune to

SmashEx through manual inspection. Alibaba Inclavare [14] and

Fortanix Rust EDP [39] both simply disable all in-enclave exception

handling, which limits the enclave functionality. Graphene-SGX [33,

58] introduces software-based atomicity to safely handle exceptions,

which we elaborate on in Section 9.3.

9 DEFENDING AGAINST SMASHEX

The proof-of-concept exploits for SmashEx are viable because the

enclave runtimes (a) use the common program stack for exception

handling; and (b) lack software- or hardware-enforced atomicity.

An ideal solution would be to defeat both (a) and (b). However, we

discuss the mitigations for these two issues separately. We summa-

rize how certain design choices render enclave runtimes immune

to SmashEx, by disabling either requirement (a) or (b):

• Use a dedicated stack for exception handling (e.g., Ratel [24]

and the alternative mechanism in Google Asylo [29]);

• Disable exception handling (e.g., Fortanix Rust EDP [39] and

Alibaba Inclavare [14]);

• Program the exception handler in a re-entrant way (e.g.,

Graphene-SGX [33]).

However, those designs come with significant downsides either

by limiting the enclave functionality or by introducing complexity.

9.1 Dedicated Exception Handler Stack

Unlike the original exception handler in Intel SGX SDK, the excep-

tion handling interfaces in Google Asylo and Ratel use a dedicated

stack separate from the one used by the interrupted thread. They

therefore avoid relying on the rsp value in the SSA region which

SmashEx exploits to control the anchor. However, since both of
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them reserve only one separate stack, exception handling through

such interfaces cannot be nested. In other words, if during the han-

dling of an exception, another exception occurs, this new exception

cannot be handled inside the enclave. This limits the compatibil-

ity between Google Asylo or Ratel and traditional programming

models where signals can be nested. One can adapt these runtimes

to support nested exceptions by reserving an individual stack for

each level of nested exceptions. However, the fixed memory size

required by each reserved stack may limit its scalability.

9.2 Disabling Exception Handling

Both Fortanix Rust EDP [39] and Alibaba Inclavare [14] are immune

to SmashEx because they do not support any in-enclave exception

handling. They configure enclaves so that the SGX hardware forbids

the untrusted software from re-entering the enclave via EENTER

after an AEX. Specifically, the configuration parameter, TCS.NSSA,

when set to 1, implies that the hardware can store at most 1 AEX

context inside the SSA at any time. Whenever the untrusted soft-

ware attempts to re-enter the enclave via EENTER following an AEX,

the hardware disallows it because of the insufficient AEX context

slots to hold another potential AEX after the re-entry. Without the

possibility of a re-entry, in-enclave exception handling is effectively

disabled. Making an enclave thread execution fully synchronous

this way simplifies the reasoning about re-entrancy. However, this

design choice limits the functionality of the enclave software. For

example, the try-catch exception handling primitive widely used

in modern high-level programming languages cannot leverage hard-

ware exception support inside an enclave, making them inefficient

and cumbersome to enable. It hinders the implementation of signal

handling mechanisms commonly provided by modern OSes such as

Linux, which are important to the functioning of user applications.

Such limitations degrade the compatibility of Alibaba Inclavare and

Fortanix Rust EDP with traditional programming models.

9.3 Re-entrant Exception Handling

An SGX runtime software may attempt to provide atomic primitives

for re-entrant exception handling. One example is Graphene-SGX.

1 movq SGX_GPR_RIP(%rbx), %rax

2 leaq .Locall_about_to_eexit_begin(%rip), %r11

3 cmpq %r11, %rax

4 jb .Lhandle_interrupted_ocall_case_c

5 leaq .Locall_about_to_eexit_end(%rip), %r11

6 cmpq %r11, %rax

7 jae .Lhandle_interrupted_ocall_case_c

8
9 // ...

10
11 .Lhandle_interrupted_ocall_case_c:
12 movq %rdi, SGX_GPR_RSI(%rbx) # external event for .Lreturn_from_ocall

13 leaq .Lreturn_from_ocall_after_stack_restore(%rip), %rax

14 movq %rax, SGX_GPR_RIP(%rbx)

15 movq %rsi, SGX_GPR_RSP(%rbx)

16 movq $0, %gs:SGX_PRE_OCALL_STACK

17 andq $(~(RFLAGS_DF | RFLAGS_AC)), SGX_GPR_RFLAGS(%rbx)

18 jmp .Leexit_exception

Listing 4: Emulation of part of the sanitization logic at

enclave entry in the exception handler of Graphene-SGX.

Graphene-SGX. It uses the same stack from the interrupted thread

for exception handling. However, in our investigation, we find that

Graphene-SGX does not blindly load the stack pointer from the

SSA region. Instead, it examines the location of the AEX (the rip

register value inside the SSA region), and handles it differently in

different cases. For example, when Graphene-SGX finds that the

AEX occurred within the sanitization logic at the enclave entry, it

will emulate the unfinished sanitization logic. Instead of operating

on real registers as in normal execution, it operates on the register

values stored in the SSA region (see Listing 4). This separates the

execution of the sanitization logic and the exception handler. Thus,

when the enclave starts the post-sanitization processing of the

AEX, the stack has already been correctly set up and is no longer

controlled by the untrusted software.

1 leaq .Ltmp_rip_saved0(%rip), %rax

2 cmpq %rax, SGX_GPR_RIP(%rbx)

3 je .Lemulate_tmp_rip_saved0

4
5 leaq .Ltmp_rip_saved1(%rip), %rax

6 cmpq %rax, SGX_GPR_RIP(%rbx)

7 je .Lemulate_tmp_rip_saved1

8
9 leaq .Ltmp_rip_saved2(%rip), %rax

10 cmpq %rax, SGX_GPR_RIP(%rbx)

11 je .Lemulate_tmp_rip_saved2

12
13 jmp .Lemulate_tmp_rip_end

14
15 .Lemulate_tmp_rip_saved0:
16 # emulate movq SGX_CPU_CONTEXT_R15 - SGX_CPU_CONTEXT_RIP(%rsp), %r15

17 movq SGX_GPR_RSP(%rbx), %rax

18 movq SGX_CPU_CONTEXT_R15 - SGX_CPU_CONTEXT_RIP(%rax), %rax

19 movq %rax, SGX_GPR_R15(%rbx)

20 .Lemulate_tmp_rip_saved1:
21 # emulate movq SGX_CPU_CONTEXT_RSP - SGX_CPU_CONTEXT_RIP(%rsp), %rsp

22 movq SGX_GPR_RSP(%rbx), %rax

23 movq SGX_CPU_CONTEXT_RSP - SGX_CPU_CONTEXT_RIP(%rax), %rax

24 movq %rax, SGX_GPR_RSP(%rbx)

25 .Lemulate_tmp_rip_saved2:
26 # emulate jmp *%gs:SGX_TMP_RIP

27 movq %gs:SGX_TMP_RIP, %rax

28 movq %rax, SGX_GPR_RIP(%rbx)

29 .Lemulate_tmp_rip_end:
30 movq SGX_GPR_RSP(%rbx), %rsi

31 // ...

Listing 5: Emulation of part of the enclave context

restoration code in the exception handler of Graphene-SGX.

1 .Ltmp_rip_saved0:
2 movq SGX_CPU_CONTEXT_R15 - SGX_CPU_CONTEXT_RIP(%rsp), %r15

3 .Ltmp_rip_saved1:
4 movq SGX_CPU_CONTEXT_RSP - SGX_CPU_CONTEXT_RIP(%rsp), %rsp

5 .Ltmp_rip_saved2:
6 jmp *%gs:SGX_TMP_RIP

Listing 6: Part of the enclave context restoration

code. Graphene-SGX emulates its execution instruction by

instruction in the exception handler (see Listing 5).

Besides emulating the sanitization logic and register setup at

the enclave entry point, Graphene-SGX emulates the execution of

the interrupted thread whenever the AEX occurs in other critical

regions where the enclave state is unsafe for exception handling.

Listings 5 and 6 show more examples. After the emulation, the AEX

appears to have occurred outside the critical regions. By doing this,

Graphene-SGX effectively makes the enclave exception handler

safely re-entrant.

This design is significantly more nuanced and complex. We note

that it has been the result of years of patching and revising. The

signal and exception handling design for Graphene-SGX has un-

dergone several iterations in the past three years [18, 22, 23].

Alternative Implementation Strategies. The design adopted by

Graphene-SGX is not the only possible implementation strategy

and can be generalized by addressing two key questions.
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Q1.How can the enclave identify whether an exception occurred

inside a critical section?

Q2.What should the enclave do when the untrusted OS attempts

to deliver an exception during a critical section to the enclave?

Tracking Critical Sections. The enclave can track its own critical

sections explicitly. Specifically, the enclave runtime software can

maintain the location information (e.g., code address ranges) about

all its critical sections. When required, it can check if the code

address where the exception occurred falls within the range of

known critical sections. This is the option chosen by Graphene-

SGX. Alternatively, the enclave software can maintain a per-thread

1-bit flag in its privatememory. It sets the flag whenever the enclave

is about to enter a critical section, and clears it immediately after

exiting a critical section. To check if an exception happened in a

critical section, the enclave exception handler can check this flag.

Handling Exceptions in Critical Sections. If the enclave is in-

terrupted midway in a critical section, one approach is to emulate

the rest of the critical section. More precisely, the enclave exception

handler can identify the point of interruption, look up the critical

section, and emulate the remaining part of the interrupted critical

section. After that, the handler can perform the real (non-emulated)

exception handling. With this mechanism, the enclave gets an il-

lusion that the exception occurred immediately after the critical

section. This design works only in cases where the enclave runtime

has sufficient information about the critical sections to emulate it.

This is the option chosen by Graphene-SGX.

A second way is to postpone the exception handling. Instead of

immediately invoking the exception handler, the enclave runtime

software can choose to execute the current critical section. Once

the section ends, the runtime executes the handler. This mechanism

requires the enclave runtime to maintain the received exceptions

(e.g., via setting a per-thread pending flag) and add logic at the end

of each critical section to handle pending exceptions.

Finally, a straightforward way is to ignore any exceptions that

arrive when a critical section is being executed. However, it is im-

portant to ensure functional correctness when the OS is cooperative.

For instance, an exception should not be lost when a cooperative

OS delivers it while the enclave is in a critical section, unless the

enclave exposes sufficient information (e.g., by setting OS-visible

critical section flags) to allow the OS to avoid delivering exceptions

during critical sections.

Caveats. Although the above design options are conceptually sim-

ple, there are several implementation details that need careful atten-

tion. The first issue arises when an enclave has to maintain a data

structure to track pending exceptions (e.g., a bitmap that records the

postponed exception types). After the critical section, the enclave

needs to read such data structures to process the postponed excep-

tions. Should the code that does this be included as part of the same

critical section? If it is part of the critical section, the data structure

operations must be made re-entrant. This is because, in a critical

section, a delivered exception will trigger write operations to the

data structures. If it is outside the critical section, one must either

ensure the same re-entrancy property or ensure that no exception

handling code contains critical sections, and hence may involve

write operations to the data structures.

The second issue concerns the use of a critical flag. One must

ensure that the flag covers all locations where exceptions should

not be handled. One location particularly prone to negligence is

immediately after an enclave entry (EENTER). As demonstrated by

SmashEx, exceptions immediately after the enclave entry, when

untrusted OS still controls the register values, cannot be handled

directly. If the enclave relies on an instruction to set the flag after

the enclave entry, this leave a window of time between enclave

entry and when the flag is set. To avoid this problem, an enclave

must ensure that the flag is set before an EEXIT.

A third issue stems from the requirement of exception-free han-

dler implementations. Although one can carefully implement han-

dler logic to be free of certain programming-oriented exceptions

(e.g., divide by zero), OS-induced page faults are difficult to avoid.

For instance, if an enclave uses custom page fault handlers on SGX2,

delivery of page faults to the enclave cannot be delayed or ignored,

especially for faults on pages accessed within a critical section of

the exception handler itself.

In summary, while there are software-based strategies for achiev-

ing re-entrant exception handling, they introduce considerable

complexity to ensure desired functionality and security.

9.4 Impact of Other Memory Defenses

A second line of defenses aim at thwarting the code-reuse attack

steps (Steps 5 and 6) of SmashEx.

Bypassing ASLR. The SmashEx attack requires the attacker to

know the exact address of the anchor. Since the OS allocates the

virtual memory range for the enclave and sets the page permissions,

the attacker knows that the enclave stack will be within a certain

range. However, the enclave may randomize the base address of its

stack (e.g., Asylo [29]) to prevent the attacker from predicting the

anchor location accurately. The attacker can adapt SmashEx in the

following ways to overcome this hurdle.

The first strategy follows the observation that Steps 1ś4 are to

overwrite more than one memory location. For example, in our

Google Asylo [29] PoC exploit (elided here), we can overwrite 152

bytes, out of which 64 bytes are freely controllable by the attacker.

The attacker can therefore set all those locations to the desired

value for the anchor in the hope of hitting the actual anchor. Given

that Google Asylo initializes the stack base address by advancing

the stack by a random amount between 1 and 2048, this strategy

has an attack success rate of 3.125% per trial.

One of the issues with using ASLR defenses in our context is

that a failed trial results in an invalid memory access which in

turn creates another exception. This gives the attacker additional

opportunities to reenter the enclave. To concretely illustrate the

issue, we implemented a multi-round proof-of-concept attack vari-

ant of SmashEx specialized for Google Asylo. A multi-round attack

trial has multiple rounds, where each round executes Steps 1ś4

of the SmashEx procedure to corrupt one location. Note that the

attacker-corrupted location is used in Step 5. If we mispredict the

anchor address as the corruption value, the enclave will potentially

crash in the subsequent steps. What remains, therefore, is to keep

iterating Steps 1ś4 while making sure that the enclave does not

progress to Step 5, i.e., to resume the return from ocall. To achieve
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this, the attacker uses an invalid ecall number6 to enter the en-

clave in Step 1, instead of the one that requests a return from an

ocall. When the enclave resumes execution after AEX at the entry

point, it checks the ecall command. Since the ecall command is

invalid, the enclave forces an EEXIT. As a result, Steps 5ś6 will not

take place and instead Steps 1ś4 repeat. The attacker can then keep

repeating this procedure of using bad ecall numbers and corrupt

one new location each time reliably. Finally, after controlling suffi-

cient locations, the attacker performs an EENTER with the correct

ecall number. In this last iteration, the enclave performs Steps 5ś6

and uses a bad stack value, thus corrupting the anchor reliably even

in the presence of ASLR.

Bypassing Stack Canary. The stack canary is a widely-deployed

defense against buffer overflow exploits [37]. The attacker has to

corrupt unintended stack locations as a side effect of the memory

corruption. While SmashEx does not involve a buffer overflow, it

does corrupt unintended locations beyond the anchor itself. There-

fore, it is conceptually possible to mitigate SmashEx with stack

canaries. However, the stack canary supported in common modern

C compilers (e.g., with -fstack-protector-all in GCC) does not

help protect against SmashEx. Unlike the return address of a func-

tion call, the stack canary automatically generated by the compiler

does not protect the saved ocall context, and hence the anchor,

that SmashEx aims to control. Moreover, even if all code pointers

on the stack have been carefully protected by stack canaries, the

attacker can adapt SmashEx to launch a data-oriented attack [41]

without controlling code pointers. In addition, due to a lack of

checks on the stack pointer, on some SGX runtimes (e.g., Open

Enclave) SmashEx has the option to control non-stack locations,

including where the secret stack canary value is stored. This makes

existing stack canary defenses ineffective against SmashEx.

9.5 Better Hardware Support for Atomicity

While it is possible to implement the enclave software in a safely

re-entrant way, doing this entails a fairly complicated design which

is difficult to reason about. This motivates us to propose strategies

of enabling atomicity support in hardware, which SGX currently

lacks. We start by examining the atomicity support available to the

OS and traditional user applications.

Atomicity in the OS. Since the OS can configure hardware inter-

rupt and exception sources (e.g., interrupt controllers), it can simply

disable interrupts and exceptions whenever it desires atomicity. For

SGX enclave software, however, an untrusted party (i.e., the OS)

can trigger an exception at any time. The enclave has no way of

controlling or predicting when it will be interrupted.

Atomicity in Traditional User Applications. Traditional user

applications rely on the OS to control when they can be interrupted

and re-entered in the midst of their execution (e.g., for signal han-

dling). For example, POSIX-compliant OSes define the set of sce-

narios where they can deliver signals to a user process [20]. User

processes can use the sigprocmask system call to dynamically en-

able or disable the delivery of a certain signal during runtime. For

6The ecall number is an integer that the untrusted software passes to the enclave
upon an ecall to indicate which enclave function to execute.

SGX enclaves, the OS or the host process is still in charge of invok-

ing in-enclave exception handlers, but it is not trusted and should

not be relied on to decide when to perform a re-entry.

EnablingAtomicity Primitives inHardware.We point out that

in both the above cases, the atomicity guarantee is provided by

a different but trusted entity (the hardware or the OS) through

disabling either interrupts or re-entry upon an interrupt. For an

SGX enclave, only the hardware can be such a trusted entity. We

discuss the potential changes in the SGX hardware abstraction to

enable atomicity primitive for enclaves. Following the inspiration

from the atomicity primitives available to the OS and traditional

user applications, we discuss two directions: disabling exceptions

and disabling re-entry.

Direction 1: Temporarily Disabling Interrupts and Exceptions. Intel

SGX can be adapted to allow enclaves to dynamically enable or

disable interrupts and exceptions from hardware, similarly to the

primitives OSes use to achieve atomicity. The SGX hardware can

protect the enclave execution from being interrupted at the request

of the enclave. A naïve design that allows the enclave to use this

primitive without restrictions will enable an enclave to fully occupy

a hardware thread for an arbitrarily long period, thus launching

denial-of-service (DoS) attacks against the OS. To avoid DoS attacks,

the SGX hardware can let the OS decide whether to accept or deny

such requests from enclaves. The hardware relays the decision of the

OS to the enclave, who in turn can make an informed decision about

executing critical code. For example, the OSmay base such decisions

on a pre-exchanged quota for interrupt disabling: it may permit the

enclave to run with interrupts disabled for (say) 100 cycles in every

10K cycles executed in the enclave. In such a case, corresponding

support for counting and limiting the enclave execution cycles

will need to be available inside the hardware. Such an enclave-

OS contract facilitated and enforced by the hardware, if designed

carefully, can guarantee atomicity while preventing DoS.

Direction 2: Temporarily Disabling Enclave Re-entry. Instead of

blocking interrupts or exceptions, another option is to allow the

enclave to disable enclave re-entry during runtime. In this design,

the enclave can still be interrupted when it has disabled enclave

re-entry, leaving untrusted software the chance to perform excep-

tion handling and manage resources accordingly. However, the

SGX hardware only allows it to resume the enclave execution via

ERESUME, but disallows re-entry into the enclave via EENTER. Im-

mediately after enclave entry, since the enclave software needs

to perform crucial operations to complete a context switch into

the enclave, the enclave hardware should preferably automatically

mask enclave re-entry by default to ensure its atomicity.

Both directions pose the risk of opening a new side channel.

The attacker may learn whether an enclave is inside a critical code

region simply by attempting to deliver an exception into it. Never-

theless, we believe addressing atomicity on the OS-enclave interface

through a carefully designed hardware abstraction is promising

future work. We hope these directions offer a starting point.

10 RELATED WORK

The SmashEx attack is targeted at Intel SGX enclaves. It stems from

unsafe re-entrancy at the OS-enclave interface. We have demon-

strated that, if exploited, it can lead to code-reuse attacks. In this
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section we examine prominent work on securing host-enclave in-

terfaces on Intel SGX, code-reuse attacks targeting SGX enclaves,

and re-entrancy vulnerabilities in non-enclave settings.

Security of Synchronous SGX Interfaces. Since the introduc-

tion of Intel SGX, there has been abundant work on the security of

the synchronous interfaces between untrusted software and SGX

enclaves. Previous work has discovered that an attacker can com-

promise the confidentiality and integrity of an enclave by providing

malicious system call return values, referred to as Iago attacks [34].

Eliminating such threats requires enclave software to carefully scru-

tinize system call return values passed into an enclave [28, 55, 58],

with the aid of formal verification [56] or software testing tech-

niques [38]. In addition, enclave runtimes may forget to clean cer-

tain registers after a context switch into an enclave, thus opening

up the enclave to attacks [27, 59]. The synchronous interface has

been a subject of comprehensive survey and categorization of at-

tacks [42]. Unlike these lines of work, our paper examines the

security of asynchronous OS-enclave interfaces.

Security ofAsynchronous SGX Interfaces. Existing attacks have

shown that timer interrupts or page faults can be leveraged to leak

enclave secrets through side channels [32, 60, 63, 64]. Defending

against such side-channel attacks is non-trivial [35, 53, 54]. Previous

work has examined the attack avenue of enclave thread scheduling.

In the SGX threat model, the attacker can control the scheduling

and influence the enclave logic. Such manipulations can compro-

mise enclave confidentiality and integrity if the enclave logic is

influenced by scheduling. For example, the attacker can affect the

enclave behavior by exploiting existing synchronization bugs [2] or

breaking assumptions made by the enclave application regarding

the thread scheduling algorithm [61]. However, the security impli-

cations of the asynchronous interfaces of SGX enclaves have not

been comprehensively studied. Specifically, to our knowledge, our

work is the first to study the security implications at the OS-enclave

interface for asynchronous exceptions on SGX.

Code-reuse Attacks on SGX. The prevalence of code-reuse at-

tacks in non-enclave applications is well studied [57]. Although

enclaves reduce the size of the trusted computing base, they are

susceptible to corruption if the enclave code has unsafe memory

usage. Thus, enclaves are not immune to code-reuse attacks [36].

Dark-ROP [43] demonstrates a ROP attack even when the enclave

binary is end-to-end encrypted [30, 51] such that the attacker can-

not inspect it. They assume a fixed enclave address space layout,

which allows the attacker to probe the locations of useful gad-

gets through trials-and-errors. This assumption is justified by the

difficulty in applying defense techniques such as ASLR to SGX

enclaves due to the constraints imposed by the Intel SGX design.

SGX-Shield [52] proposes a strategy to enable ASLR in SGX en-

claves and prevent code-reuse attacks. However, as shown in the

subsequent work, SGX-Shield does not randomize the code inside

the trusted runtime of the enclave. This allows the attacker to

exploit memory-unsafe enclave code and launch powerful ROP at-

tacks [31]. SmashEx demonstrates a code-reuse attack on enclaves.

However, unlike the existing work, we do not assume a pre-existing

memory vulnerability in the enclave software.

Re-entrancy Vulnerabilities & Defenses. Traditional asynchro-

nous interfaces, such as the signal handler, are prone to re-entrancy

challenges [65]. Such vulnerabilities are common in several other

systems [5ś7, 9, 10, 40, 44]. SmashEx is the first attack that exploits

re-entrancy vulnerabilities in the context of Intel SGX. Preventing

re-entrancy bugs in general involves introducing a notion of atom-

icity. For instance, when the code is operating in a critical section,

the user application can request the OS to mask certain signals (i.e.,

to pause their delivery) [25]. Our work makes the first attempt to

compare and contrast exception handling in Intel SGX versus tradi-

tional systems. Our findings highlight the need for better hardware

abstractions to enable safely re-entrant enclave code.

SmashEx brings attention to a new avenue of powerful attacks

on Intel SGX. It can serve as a motivation to further scrutinize and

fortify the enclave asynchronous interface.

11 RESPONSIBLE DISCLOSURE

We informed the affected partiesÐIntel for Intel SGX SDK and Mi-

crosoft for Open Enclave SDKÐon 3 May 2021. Intel and Microsoft

acknowledged the attack and assigned CVE-2021-33767 [8]. Af-

ter due process, Intel and Microsoft released patches for SmashEx

on 13 July 2021. In addition, they released public advisories on

13 July 2021 [19] and 15 September 2021. We have assisted Intel

and Microsoft to coordinate responsible disclosures to the affected

runtimes listed in Table 1, where it was requested.

12 CONCLUSION

Asynchronous exception handling is a commodity functionality

for real-world applications today, which are increasingly utilizing

enclaves. In this work, we show the importance of providing atom-

icity guarantees at the OS-enclave interface for such exceptions. We

have introduced a new attack called SmashEx in this work, which

exploits the inherent re-entrancy interface required in exception

handling on SGX. Our exploits demonstrate the issue concretely on

popular SGX runtime frameworks. We hope our work initiates care-

ful consideration for asynchronous exception handling in existing

SGX frameworks as well as in future enclave designs.

AVAILABILITY

We maintain further information regarding SmashEx, including

how to acquire the proof-of-concept exploits for educational pur-

poses, at https://jasonyu1996.github.io/SmashEx/.
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